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Abstract

The speech code is a vehicle of language: it defines a set of forms used by a community to carry information. Such a code is

necessary to support the linguistic interactions that allow humans to communicate. How then may a speech code be formed prior to

the existence of linguistic interactions? Moreover, the human speech code is discrete and compositional, shared by all the individuals

of a community but different across communities, and phoneme inventories are characterized by statistical regularities. How can a

speech code with these properties form? We try to approach these questions in the paper, using the ‘‘methodology of the artificial’’.

We build a society of artificial agents, and detail a mechanism that shows the formation of a discrete speech code without pre-

supposing the existence of linguistic capacities or of coordinated interactions. The mechanism is based on a low-level model of

sensory–motor interactions. We show that the integration of certain very simple and non-language-specific neural devices leads to

the formation of a speech code that has properties similar to the human speech code. This result relies on the self-organizing

properties of a generic coupling between perception and production within agents, and on the interactions between agents. The

artificial system helps us to develop better intuitions on how speech might have appeared, by showing how self-organization might

have helped natural selection to find speech.

r 2004 Elsevier Ltd. All rights reserved.
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1. The origins of language: a growing field of research

A very long time ago, human vocalizations were
inarticulate grunts. Now, humans speak. The question
of how they came to speak is one of the most difficult
that science has to tackle. After its ban from scientific
inquiry during most the 20th century, because of the
Société Linguistique de Paris declared in its constitution
that is was not a scientific question, it is now again the
centre of research of a growing scientific community.
The diversity of the problems which are implied requires
a high pluri-disciplinarity: linguists, anthropologists,
neuroscientists, primatologists, psychologists but also
physicists and computer scientists belong to this
community. Indeed, a growing number of researchers
e front matter r 2004 Elsevier Ltd. All rights reserved.
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on the origins of language consider that a number of
properties of language can only be explained by the
dynamics of the complex interactions between the
entities which are involved (the interaction between
neural systems, the vocal tract, the ear, but also the
interactions between individuals in a real environment).
This is the contribution of the theory of complexity
(Nicolis and Prigogine, 1977), developed in the 20th
century, which tells us that there are many natural
systems in which macroscopic properties can not be
deduced directly from the microscopic properties. This is
what is called self-organization. Self-organization is a
property of systems composed of many interacting sub-
systems, where the patterns and dynamics at the global
level are qualitatively different from the patterns and
dynamics of the sub-systems. This is for example the
case of the fascinating structures of termite nests
(Bonabeau et al., 1999), whose shape is neither coded
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nor known by the individual termites, but appears in a
self-organized manner when termites interact. This type
of self-organized dynamics is very difficult to grasp
intuitively. The computer happens to be the most suited
tool for their exploration and their understanding
(Steels, 1997). It is now an essential tool in the domain
of human sciences and in particular for the study of the
origins of language (Cangelosi and Parisi, 2002). One of
the objectives of this paper is to illustrate how it can help
our understanding to progress.
We will not attack the problem of the origins of

language in its full generality, but rather we will focus on
the question of the origins of one of its essential
components: speech sounds, the vehicle and physical
carriers of language.
Fig. 1. The cells in the honey-bees nests (figure on the left) have a

perfect hexagonal shape. Packed water bubbles take spontaneously

this shape under the laws of physics (figure on the right). This lead

D’Arcy Thompson to think that these same laws of physics might be of

great help in the building of their hexagonal wax cells.
2. The speech code

Human vocalization systems are complex. Though
physically continuous acoustico-motor trajectories, vo-
calizations are cognitively discrete and composi-
tional: they are built with the re-combination of units
which are systematically re-used. These units are present
at several levels (Browman and Goldstein, 1986):
gestures, coordination of gestures or phonemes, mor-
phemes. While the articulatory space which defines the
space of physically possible gestures is continuous, each
language discretizes this space in its own way, and only
uses a small and finite set of constriction configurations
when vocalizations are produced as opposed to using
configurations which span all the continuous articulatory
space: this is what we call is the discreteness of the speech
code. While there is a great diversity across the
repertoires of these units in the world languages, there
are also strong regularities (e.g. the frequency of the
vowel system /a, e, i, o, u/ as shown in Schwartz
et al. (1997)).
Moreover, speech is a conventional code. Whereas

there are strong statistical regularities across human
languages, each linguistic community possess its
own way of categorizing sounds. For example, the
Japanese do not hear the difference between the [r]
of ‘‘read’’ and the [l] of ‘‘lead’’. How can a code,
shared by all the members of a community, appear
without centralized control? It is true that since the
work of de Boer (2001) or Kaplan (2001), we know how
a new sound or a new word can propagate and be
accepted in a given population. But this is based on
mechanisms of negotiation which pre-suppose the
existence of conventions and of linguistic interac-
tions. These models are dealing with the cultural
evolution of languages, but do not say much about the
origins of language. Indeed, when there were no
conventions at all, how could the first speech conven-
tions have appeared?
3. How did the first speech codes appear?

It is then natural to ask where this organization comes
from, and how a shared speech code could have formed
in a society of agents who did not already possess
conventions. Two types of answers must be provided.
The first type is a functional answer: it establishes the
function of sound systems, and shows that human sound
systems have an organization which makes them
efficient for achieving this function. This has for
example been proposed by Lindblom (1992) who
showed that statistical regularities of vowel systems
could be predicted by searching for the vowel systems
with quasi-optimal perceptual distinctiveness. This type
of answer is necessary, but not sufficient: it does not
explain how evolution (genetic or cultural) may have
found these optimal structures, and how a community
may choose a particular solution among the many good
ones. In particular, it is possible that ‘‘naive’’ Darwinian
search with random variations is not efficient enough for
finding complex structures like those of speech: the
search space is too big (Ball, 2001). This is why a second
type of answer is necessary: we have to account for how
natural selection may have found these structures. A
possible way to do that is to show how self-organization
can constrain the search space and help natural
selection. This may be done by showing how a much
simpler system can self-organize spontaneously and
form the structure we want to explain.
The structure of our argumentation about the origins

of speech is the same as the one of D’Arcy Thompson
(Thompson, 1932) about the explanation of hexagonal
cells in honey-bees nests (see Fig. 1). The cells in the
honey-bees nests have a perfect hexagonal shape. How
did bees came to build such structures? A first element of
answer appears if one remarks that the hexagon is the
shape which necessitates the minimum amount of wax in
order to cover a plane with cells of a given surface. So,
the hexagon makes the bees spend less metabolic energy,
and so they are more efficient for survival and
reproduction than if they would build other shapes.
One can then propose the classical neo-Darwinian
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explanation: the bees must have begun by constructing
random shapes, then with random mutations and
selections, more efficient shapes were progressively
found, until one day the perfect hexagon was found.
Now, a genome which would lead a bee to build exactly
hexagons must be rather complex and is really a needle
in a haystack. And it seems that the classical version of
the neo-Darwinian mechanism with random mutations
is not efficient enough for natural selection to have
found such a genome. So the explanation is not
sufficient. D’Arcy Thompson completed it. He remarked
that when wax cells, with a shape not too twisted, were
heated as they actually are by the working bees, then
they have approximately the same physical properties as
water droplets packed one over the other. And it
happens that when droplets are packed, they sponta-
neously take the shape of hexagons. So, D’Arcy
Thompson shows that natural selection did not have
to find genomes which pre-program precisely the
construction of hexagons, but only genomes who made
bees pack cells whose shape should not be too twisted,
and then physics would do the rest.1 He showed how
self-organized mechanisms (even if the term did not exist
at the time) could constrain the space of shapes and
facilitate the action of natural selection. We will try to
show in this paper how this could be the case for the
origins of speech sounds.
Some work in this direction has already been

developed in Browman and Goldstein (2000), de Boer
(2001), and Oudeyer (2001b) concerning speech, and in
Steels (1997), Kirby (2001) or Kaplan (2001), concerning
lexicons and syntax. These works provide an explana-
tion of how a convention like the speech code can be
established and propagated in a society of contemporary
human speakers. They show how self-organization helps
in the establishment of society-level conventions only
with local cultural interactions between agents. But all
these works deal rather with the cultural evolution of
languages than with the origins of language. Indeed, the
mechanisms of convention propagation that they use
necessitate already the existence of very structured and
conventionalized interactions between individuals. They
pre-suppose in fact a number of conventions whose
complexity is already ‘‘linguistic’’.
1This does not mean that nowadays honey bees have not a precise

innate hard wired neural structure which allows them to build precisely

hexagonal shapes, as has been suggested in further studies such as

those of von Frisch (1974). The argument of D’Arcy Thompson just

says that initially the honey bees might have just relied on the self-

organization of heated packed wax cells, which would have lead them

to ‘‘find’’ the hexagon, but later on in their evolutionary history, they

might have incorporated in their genome schemata for building

directly those hexagons, in a process similar to the Baldwin effect

(Baldwin, 1896), in which cultural evolution is replaced here by the

self-organization of coupled neural maps.
Let us illustrate this point with the work of de Boer
(2001). He proposed a mechanism for explaining how a
society of agents may come to agree on a vowel system.
This mechanism is based on mutual imitations between
agents and is called the ‘‘imitation game’’. He built a
simulation in which agents were given a model of the
vocal tract as well as a model of the ear. Agents played a
game called the imitation game. Each of them had a
repertoire of prototypes, which were associations
between a motor program and its acoustic image. In a
round of the game, one agent called the speaker, chose
an item of its repertoire, and uttered it to the other
agent, called the hearer. Then the hearer would search in
its repertoire for the closest prototype to the speaker’s
sound, and produce it (he imitates). Then the speaker
categorizes the utterance of the hearer and checks if the
closest prototype in its repertoire is the one he used to
produce its initial sound. He then tells the hearer
whether it was ‘‘good’’ or ‘‘bad’’. All the items in the
repertoires have scores that are used to promote items
which lead to successful imitations and prune the other
ones. In case of bad imitations, depending on the scores
of the item used by the hearer, either this item is
modified so as to match better the sound of the speaker,
or a new item is created, as close as possible to the sound
of the speaker.
This model is obviously very interesting since it was

the first to show a process of formation of vowel systems
within a population of agents (which was then extended
to syllables by Oudeyer (2001b)). Yet, one has also to
remark that the imitation game that agents play is quite
complex and requires a lot of assumptions about the
capabilities of agents. From the description of the game,
it is clear that to perform this kind of imitation game, a
lot of computational/cognitive power is needed. First of
all, agents need to be able to play a game, involving
successive turn-taking and asymmetric changing roles.
Second, they need to have the ability to try to copy the
sound production of others, and be able to evaluate this
copy. Finally, when they are speakers, they need to
recognize that they are being imitated intentionally, and
give feedback/reinforcement to the hearer about the
success or not. The hearer has to be able to understand
the feedback, i.e. that from the point of view of the
other, he did or did not manage to imitate successfully.
It seems that the level of complexity needed to form

speech sound systems in this model is characteristic of a
society of agents which has already some complex ways
of interacting socially, and has already a system of
communication (which allows them for example to
know who is the speaker and who is the hearer, and
which signal means ‘‘good’’ and which signal means
‘‘bad’’). The imitation game is itself a system of
conventions (the rules of the game), and agents
communicate while playing it. It requires the transfer
of information from one agent to another, and so
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requires that this information be carried by some shared
‘‘forms’’. So it pre-supposes that there is already a
shared system of forms. The vowel systems that appear
do not really appear ‘‘from scratch’’. This does not
mean at all that there is a flaw in de Boer’s model, but
rather that it deals with the cultural evolution of speech
rather than with the origins (or, in other terms it deals
with the formation of languageS—‘‘les langues’’ in
French—rather than with the formation of language—
‘‘ le langage’’ in French). Indeed, de Boer presented
interesting results about sound change, provoked by
stochasticity and learning by successive generations of
agents. But the model does not address the boot-
strapping question: how the first shared repertoire of
forms appeared, in a society with no communication
and language-like interaction patterns? In particular, the
question of why agents imitate each other in the context
of de Boer’s model (this is programmed in) is open.
The ‘‘naming game’’ described in Kaplan (2001), or

the ‘‘iterated learning model’’ described in Kirby (2001),
are based on similar strong assumptions concerning the
cognitive capabilities of the agents. Kaplan (2001) pre-
supposes the capacity to play a game with rules even
more complex than in the ‘‘imitation game’’. Kirby
(2001) pre-supposes complex parsing capabilities as well
as non-trivial generalization mechanisms which seem to
be language specific, even if its simulation does not use
an explicit functional pressure for communication. And,
most importantly, both pre-suppose the existence of a
speech convention: their agents can transmit and
recognize ‘‘labels’’ or lists of letters directly (what they
learn is what these labels mean for the others in the case
of Kaplan (2001), or how these streams of letters are
syntactically organized by the others in the case of Kirby
(2001)).
This shows that existing work relies on agents whose

innate cognitive capacities are already very complex and
‘‘quasi-linguistic’’, and which possess already a number
of conventions. So far, we do not know how these
capacities and these conventions, especially the speech
convention, might have appeared if we do not pre-
suppose that speech already exists. This is why we need
either to provide the explanation of their origins, or we
need to provide a mechanism of the origins of speech
which does not necessitate them and relies on much
simpler capacities whose origins we can understand
without pre-supposing the existence of speech.
We are going to present in this paper the second

option: we will build an artificial system that will put
forward the idea that indeed, much simpler mechanisms
can account for the formation of shared acoustic codes,
which may later on be recruited for speech communica-
tion. This mechanism relies heavily on self-organization,
in the same manner as in the explanation of the
hexagonal shape of honey bee’s cells, where the self-
organization due to the physics of packed wax cells does
most of the job. Before presenting this artificial system,
we will briefly describe our methodology.
4. The method of the artificial

The ‘‘method of the artificial’’ consists in building a
society of formal agents (Steels, 2001). The scientific
logic is abductive. These agents are computer programs
implemented in robots which possess for example an
artificial vocal tract, an artificial ear, and artificial neural
networks that connect them. These components are
inspired by what we know of their human counterpart,
but we do not necessarily try to reproduce faithfully
what we know of the human brain structures. We then
study the dynamics resulting from their interactions, and
we try to determine in what conditions they reproduce
phenomena analogous to those of human speech. This
does not aim to show directly what were the mechanisms
which gave rise to human speech, but the aim is to show
what types of mechanisms are plausible candidates. The
building of this artificial system provides constraints to
the space of possible theories, in particular by showing
examples of mechanisms which are sufficient, and
examples of mechanisms which are not necessary (e.g.
we will show that imitation or feedback are not
necessary to explain the formation of shared discrete
speech codes).
Some criticisms are sometimes put forward about this

approach of the origins of language through the
building of artificial systems. The opposition is often
based on the argument that computer models are based
on strong assumptions which are remote from reality or
very difficult to validate or refute. This comes from a
misunderstanding of the methodology and of the aim of
the researchers who build these artificial systems. It must
be stated clearly that this kind of computer simulation
does not intend to provide directly an explanation about
the origins of some aspects of the human language.
Rather, they are used to organize the thinking and the
conceptualization of the problematic of the origins of
language, by shaping the search space of possible
theories. They are used to evaluate the internal
coherence of existing theories, and to explore new
theoretical ideas. Then of course, these computational
models need to be extended and selected so as to fit the
observations, and become actual scientific hypotheses of
the origins of language. But because the phenomena
involved in the origins of language are complex, we must
first develop and conceptualise our intuitions about the
possible dynamics, before trying to formulate actual
hypotheses. Building abstract computer simulations is
so far the best tool for this purpose.
Another opposition is the argument that says that too

many aspects are modelled at the same time, at the price
of modelling each of them over simplistically. This
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criticism is related to the first one. It should be answered
again that this might still be useful because of complex-
ity: some phenomena are understandable only through
the interactions of many components. Yet, most
research projects studying human speech focus on very
particular isolated components like the study of the
electro-mechanical properties of the cochlea, the archi-
tecture of the auditory cortex, the acoustics of the vocal
tract, the systemic properties of vowels systems, etc. Of
course, having detailed knowledge and understanding of
each of these components is fundamental. But focusing
on each of them individually might prevent us from
understanding major phenomena of speech and lan-
guage (and might possibly prevent us from under-
standing some of the aspects of each module). It is
necessary to study their interactions in a parallel track.
Because, it is practically impossible to incorporate all
the knowledge that we have of each component in a
simulation, and because for most of them there exist no
real agreement on how they work, we can only use
simplistic models so far. Besides the fact that simula-
tions incorporating the interactions of many compo-
nents can provide insights on the phenomena of speech,
it is quite possible that using these simplistic models
might also shed light on the functioning of some of the
components by opening new conceptual dimensions and
new experiments in vivo. In return, the simplistic models
will then be made more realistic, which will then help the
understanding of components, forming a virtuous circle.
5. The artificial system

The system is a generalization of the one we described
in Oudeyer (2001a), which was used to model the
phenomenon called the ‘‘perceptual magnet effect’’. It is
based on the building of an artificial system, composed
of agents2 endowed with working models of the vocal
tract, of the cochlea and of some parts of the brain. The
complexity and degree of reality of these models can be
varied to investigate which aspects of the results are due
to which aspects of the model.
As explained in Oudeyer (2001a), this system contains

neural maps which are similar to those used in Guenther
and Gjaja (1996) and Damper and Harnad (2000). What
is different is that on the one hand, motor and
perceptual neural maps are coupled so that the learning
of sounds affects the production of sounds, and on the
other hand, these two other works used single agents
that learnt an existing sound system, while here we use
several agents that co-create a sound system.
2The term ‘agent’ is used in artificial intelligence as an abbreviation

of ‘artificial software agent’, and denotes a software entity which is

functionally equivalent to a robot (this is like a virtual robot in the

virtual environment of the computer).
5.1. Overview

Each agent has one ear which takes measures of the
vocalizations that it perceives, which are then sent to its
brain. It also has a vocal tract, whose shape is
controllable and is used to produce sounds. Typically,
the vocal tract and the ear define three spaces: the motor
space (which will be for example three dimensional in
the vowel simulations with tongue body position, tongue
height and lip rounding); the acoustic space (which will
be four dimensional in the vowel simulation with the
first four formants) and the perceptual space (which
corresponds to the information the ear sends to the
brain, and will be two dimensional in the vowel
simulations with the first formant and the second
effective formant).
The ear and the vocal tract are connected to the

brain, which is basically a set of interconnected artificial
neurons (the use of artificial neurons in computational
models of the human brain is described for example in
Anderson (1995)). This set of artificial neurons is
organized into two neural topological maps: one
perceptual map and one motor map. Topological
neural maps have been widely used for many models
of cortical maps (Kohonen, 1982; Morasso et al., 1998),
which are the neural devices that humans have to
represent parts of the outside world (acoustic, visual,
touch, etc.). Fig. 2 gives an overview of the architecture.
We will now describe the technical details of the
architecture.
5.2. Motor neurons, vocal tract and production of

vocalizations

5.2.1. Structure

A motor neuron j is characterized by a preferred
vector vj which determines the vocal tract configuration
Fig. 2. Architecture of the artificial system: agents are given an

artificial ear, an artificial vocal tract, and an artificial ‘‘brain’’ which

couples these two organs. Agents are themselves coupled through their

common environment: they perceive the vocalizations of their

neighbours.
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which is to be reached when it is activated and when the
agent sends a GO signal to the motor neural map. This
GO signal is sent at random times by the agent to the
motor neural map. As a consequence, the agent
produces vocalizations at random times, independently
of any events.
When an agent produces a vocalization, the neurons

which are activated are chosen randomly. Typically, 2, 3
or 4 neurons are chosen and activated in sequence.
Each activation of a neuron specifies, through its
preferred vector, a vocal tract configuration objective
that a sub-system takes care of reaching by moving
continuously the articulators. In this paper, this sub-
system is simply a linear interpolator, which produces 10
intermediate configurations between each articula-
tory objective, which is an approximation of a dyna-
mic continuous vocalization and that we denote
ar1; ar2; . . . ; arN : We did not use realistic mecha-
nisms like the propagation techniques of popu-
lation codes proposed in Morasso et al. (1998),
because these would have been rather computa-
tionally inefficient for this kind of experiment. Fig. 3
illustrates this process in the case of the abstract
two-dimensional (2-D) articulatory space that we will
now describe.
Indeed, the articulatory configurations will be coded

in an abstract space in a first set of simulations, and
coded in a realistic space in a second more realistic set of
simulations. Also, in each case, we use an artificial vocal
tract to compute an acoustic image of the dynamic
articulation.
In the abstract simulations, the articulatory con-

figurations ari ¼ ðd1i; d2iÞ are just points in ½0; 1�2:
The vocal tract is here a random linear mapping: in
order to compute the acoustic image of an articulatory
trajectory defined by the sequence of articulations
ar1; ar2; . . . ; arN ; we compute the trajectory of the
acoustic images of each articulation in the acoustic
Fig. 3. When an agent produces a vocalization, several motor neurons

are activated in sequence. Each of them corresponds to an articulatory

configuration which has to be reached from the current configuration.

A sub-control system takes care of interpolating between the different

configurations.
space with the formula:

aci ¼ ðr1:d1i þ r2:d2iÞ=2;

where aci is the acoustic image of ari and r1 as well as r2
are fixed random numbers.
In the more realistic simulations, we use a vocal tract

model of vowel production designed by de Boer (2001).
We use vowel production only because there exists this
computationally efficient and rather accurate model, but
one could do simulations with a vocal tract model which
models consonants if efficient ones were available. The
three major vowel articulatory parameters (Ladefoged
and Maddieson, 1996) are used: lip rounding, tongue
height and tongue position. The values within these
dimensions are between 0 and 1, and a triplet of values
ari ¼ ðr; h; pÞ defines an articulatory configuration. The
acoustic image of one articulatory configuration is a
point in the four-dimensional (4-D) space defined by the
first four formants, which are the frequencies of the
peaks in the frequency spectrum, and is computed with
the formula:

F1 ¼ ðð�392þ 392rÞh2 þ ð596� 668rÞh

þ ð�146þ 166rÞÞp2 þ ðð348� 348rÞh2

þ ð�494þ 606rÞh þ ð141� 175rÞÞp

þ ðð340� 72rÞh2 þ ð�796þ 108rÞh

þ ð708� 38rÞÞ;

F2 ¼ ðð�1200þ 1208rÞh2 þ ð1320� 1328rÞh

þ ð118� 158rÞÞp2 þ ðð1864� 1488rÞh2

þ ð�2644þ 1510rÞh þ ð�561þ 221rÞÞp

þ ðð�670þ 490rÞh2 þ ð1355� 697rÞh

þ ð1517� 117rÞÞ;

F3 ¼ ðð604� 604rÞh2 þ ð1038� 1178rÞh

þ ð246þ 566rÞÞp2 þ ðð�1150þ 1262rÞh2

þ ð�1443þ 1313rÞh þ ð�317� 483rÞÞp

þ ðð1130� 836rÞh2 þ ð�315þ 44rÞh

þ ð2427� 127rÞÞ;

F4 ¼ ðð�1120þ 16rÞh2 þ ð1696� 180rÞh

þ ð500þ 522rÞÞp2 þ ðð�140þ 240rÞh2

þ ð�578þ 214rÞh þ ð�692� 419rÞÞp

þ ðð1480� 602rÞh2 þ ð�1220þ 289rÞh

þ ð3678� 178rÞÞ:

These were derived from polynomial interpolation based
on a database of real vowels presented in Vallee (1994).
Details are given in de Boer (2001).
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5.2.2. Plasticity

The preferred vector of each neuron in the motor
map is updated each time the motor neurons are
activated (which happens both when the agent pro-
duces a vocalization and when it hears a vocali-
zation produced by another agent, as we will explain
below). This update is made in two steps: (1) one
computes which neuron m is most activated and
takes the value vm of its preferred vector; (2) the
preferred vectors of all neurons are modified with
the formula:

vj;tþ1 ¼ vj;t þ 0:001:Gj;tðsÞ:ðv � vj;tÞ;

where Gj;tðsÞ is the activation of neuron j at time t

with the stimulus s (as we will detail later on) and
vj;t denotes the value of vj at time t. This law of
adaptation of the preferred vectors has the con-
sequence that the more a particular neuron is activated,
the more the agent will produce articulations which
are similar to the one coded by this neuron. This is
because geometrically, when vm is the preferred vector
of the most active neuron, the preferred vectors of the
neurons which are also highly activated are shifted
a little bit towards vm: The initial value of all the
preferred vectors of the motor neurons is random and
uniformly distributed. There are in this paper 500
neurons in the motor neural map (above a certain
number of neurons, which is about 150 in all the
cases presented in the paper, nothing changes if this
number varies).

5.3. Ear, perception of vocalizations and perceptual

neurons

We describe here the perceptual system of the agents,
which is used when they perceive a vocalization. As
explained in the previous paragraphs, this perceived
vocalization takes the form of an acoustic trajectory,
i.e. a sequence of points which approximate the
continuous sounds. In the abstract simulations, these
points are in the abstract 2-D space which we described
above. In this case, the acoustic space and the
perceptual space are equal. In the more realistic
simulations, these points are in the 4-D space whose
dimensions are the first four formants of the acoustic
signal. In this case, we use also a model of our ear
which transforms this 4-D acoustic representation in a
2-D perceptual representation that we know is close to
the way humans represent vowels. This model was used
in Boe et al. (1995) and de Boer (2001). It is based
on the observations by Carlson et al. (1970) who
showed that the human ear is not able to distin-
guish the frequency peaks with narrow bands in the
high frequencies. The first dimension is the first
formant, and the second dimension is the second
effective formant:

F 0
2 ¼

F 2 if F3 � F24c;
ð2� w1ÞF 2 þ w1F3

2
if F3 � F2pc and

F4 � F 2Xc;
w2F 2 þ ð2� w2ÞF3

2
� 1 if F4 � F2pc and

F3 � F 2pF 4 � F3;
ð2þ w2ÞF 3 � w2F4

2
� 1 if F4 � F2pc and

F3 � F 2XF 4 � F3;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

with

w1 ¼
c � ðF3 � F 2Þ

c
;

w2 ¼
ðF4 � F 3Þ � ðF3 � F2Þ

F4 � F 2
;

where c is a constant of value 3.5 Barks.
In both cases (abstract and realistic simulations), the

agent gets as input to its perceptual neural system a
trajectory of perceptual points. Each of these perceptual
points is then presented in sequence to its perceptual
neural map (this models a discretization of the acoustic
signal by the ear due to its limited time resolution).
The neurons i in the perceptual map have a gaussian

tuning function which allows us to compute the
activation of the neurons upon the reception of an
input stimulus. If we denote by Gi;t the tuning function
of neuron i at time t, s is a stimulus vector, then the form
of the function is

Gi;tðsÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�1=2ðvi;t:sÞ

2=s2 ;

where the notation v1:v2 denotes the scalar product
between vector v1 and vector v2; and vi;t defines the
center of the gaussian at time t and is called the
preferred vector of the neuron. This means that when a
perceptual stimulus is sent to a neuron i, then this
neuron will be activated maximally if the stimulus has
the same value as vi;t: The parameter s determines the
width of the gaussian, and so if it is large the neurons are
broadly tuned (a value of 0.05, which is used in all
simulations here, means that a neuron responds
substantially to 10 percent of the input space).
When a neuron in the perceptual map is activated

because of a stimulus, then its preferred vector is
changed. The mathematical formula of the new tuning
function is

Gi;tþ1ðsÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�1=2vi;tþ1:s2=s2 ;
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3This means that we do not need this addition for the main results of

the system: (1) the formation of shared discrete speech codes; (2) the

formation of statistical regularities similar to those of humans in the

formed phonemic repertoires.
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where s is the input, and vi;tþ1 the preferred vector of
neuron i after the processing of s:

vi;tþ1 ¼ vi;t þ 0:001:Gi;tðsÞ:ðs � vi;tÞ:

This formula makes that the distribution of preferred
vectors evolves so as to approximate the distribution of
sounds which are heard.
The initial value of the preferred vectors of all

perceptual neurons follows a random and uniform
distribution. There are 500 neurons in the perceptual
map in the simulations presented in this paper.

5.4. Connections between the perceptual map and the

motor map

Each neuron i in the perceptual map is connected
unidirectionally to all the neurons j in the motor map.
The connection between the perceptual neuron i and the
motor neuron j is characterized by a weight wi;j ; which is
used to compute the activation of neuron j when a
stimulus s has been presented to the perceptual map,
with the formula:

Gj;tðsÞ ¼
1ffiffiffiffiffiffi
2p

p
s
� e�

P
i
wi;j Gi;tðsÞ=s2 :

The weights wi;j are initially set to a small random value,
and evolve so as to represent the correlation of activity
between neurons. This is how agents will learn the
perceptual/articulatory mapping. The learning rule is
hebbian (Sejnowsky, 1977):

dwi;j ¼ c2ðGi � hGiiÞðGj � hGjiÞ;

where Gi denotes the activation of neuron i and hactii

the mean activation of neuron i over a certain time
interval (correlation rule). c2 denotes a small constant.
This learning rule applies only when the motor neural
map is already activated before the activations of the
perceptual map have been propagated, i.e. when an
agent hears a vocalization produced by itself. This
amounts to learning the perceptual/motor mapping
through vocal babbling.
Note that this means that the motor neurons can be

activated either through the activation of the perceptual
neurons when a vocalization is perceived, or by direct
activation when the agent produces a vocalization (in
this case, the activation of the chosen neuron is set to 1,
and the activation of the other neurons is set to 0).
Because the connections are unidirectional, the propa-
gation of activations only takes place from the
perceptual to the articulatory map (this does not mean
that a propagation in the other direction would change
the dynamics of the system, but we did not study this
variant).
This coupling between the motor map and the

perceptual map has an important dynamical conse-
quence: the agents will tend to produce more vocaliza-
tions composed of sounds that they have already heard.
Said another way, when a vocalization is perceived by
an agent, this increases the probability that the sounds
that compose this vocalization will be re-used by the
agent in its future vocalizations. It is interesting to note
that this phenomenon of phonological attunement is
observed in very young babies (Vihman, 1996).
5.5. Recurrence of the perceptual map and of the motor

map

Here we present an addition to the architecture
presented in the previous paragraphs which is not
crucial for the system3 but which allows us both to
model the additional feature of categorization and to
visualize the dynamics of the rest of the system.
This addition is based on the concept of population

vector developed by Georgopoulos et al. (1988), and
used in a similar setup by Guenther and Gjaja (1996). It
proposes that the stimuli which are stored in the neural
maps through the distributed activations of neurons,
can be decoded or re-constructed by some other
parts of the brain by computing the sum of all preferred
vectors of the neurons weighted by their activity and
normalized. Technically, the population vector corre-
sponding to the pattern of activations of the neurons i of
a neural map when they have been activated by the
stimulus s is

popðsÞ ¼

P
i GiðsÞ � viP

i GiðsÞ
:

In general, popðsÞ is not exactly the same point as s,
because this decoding scheme is imprecise. But this
imprecision can be exploited usefully. Indeed, now we
add a re-entrance of this re-constructed stimulus popðsÞ:
it is fed back as an input to the neural map. And this
gives rise to a new pattern of activations, which is re-
decoded, and the result is again fed back as input, and
this is iterated until a fixed point is reached. Indeed, this
recurrent system has properties which can be shown to
be equivalent to Hopfield neural networks (Hopfield,
1982) and is very similar to the system of Morasso et al.
(1998): whatever the initial pattern of activations due to
the perception of a stimulus, the cycle coding–decoding
always converges on a fixed point (fixed pattern of
activation). This process models a categorizing beha-
vior, and the fixed point is the category which has been
recognized by the system. Note that this process is
applied to each neural map only after all activations
have been propagated and after the learning rules have
been applied (so this extension does not modify the
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dynamics induced by the mechanisms presented in the
previous paragraphs).
A nice property is that the fixed pattern of activation

when the system has converged represents a particular
stimulus which is basically the prototype of a category.
Indeed, if the preferred vectors of a neural map self-
organize in clusters as will happen in the simulations,
each cluster, coding for a discrete ‘‘mode’’ or phoneme,
will have its center which coincides with the fixed point
which is reached when a stimulus close to this cluster is
perceived. This center and associated fixed point also
represent the point of maximal density of neurons in the
vicinity of the cluster. More generally, the properties of
this recurrent system make that its dynamics is easy to
represent. Indeed, if we use a stimulus space with two
dimensions, then each cycle coding/decoding can also be
represented in 2-D : the input point is represented by the
beginning of an arrow, and the re-constructed point is
represented by the end of an arrow. By plotting all the
arrows corresponding to the first iteration of this
process for all the points on a regular grid, we can have
a general view of the different basins of attractions and
their fixed points, which are at the same time the zones
of maximal density of the clusters. We will use this kind
of plot to visualize the results of all our simulations, as
explained below.

5.6. Coupling of agents

The agents are put in a world where they move
randomly. At random times, a randomly chosen agent
sends a GO signal and produces a vocalization. The
agents which are close to it can perceive this vocaliza-
tion. Here, we fix the number of agents who can hear the
vocalization of another to 1 (we pick the closest one).
This is a non-crucial parameter of the simulations, since
basically nothing changes when we tune this parameter,
except the speed of convergence of the system (and this
speed is lowest when the parameter is 1). Technically,
this amounts to having a list of agents, and in sequence
picking up randomly two of them, have one produce a
vocalization, and the other hear it. Typically, there are
20 agents in the system. This is also a non-crucial
parameter of the simulation: nothing changes except the
speed of convergence.

5.7. What the system does not assume

It is crucial to note that as opposed to most of
simulations on the origins of language that exist in the
literature (Cangelosi and Parisi, 2002), our agents do not
play here a ‘‘language game’’, in the sense that there is
no need to suppose an extra-linguistic protocol of
interaction such as who should give feedback to whom
and at what particular moment and for what particular
purpose. In particular agents do not play the ‘‘imitation
game’’ which is for example used in de Boer (2001).
Indeed, it is crucial to note that agents DO NOT imitate
each other in the simulations we present. Indeed,
imitation involves at least the reproduction of another’s
vocalization now or later: here, one agent which hears
another one never produces a vocalization in response,
and does not store the heard vocalization so as to
reproduce it later. The only consequence of hearing a
vocalization is that it increases the probability, for the
agent which hears it, of producing later on vocalizations
whose parts are similar to those of the heard vocaliza-
tion. Of course it might happen, specially when the
system has converged on a few modes, that an agent
produces a vocalization that it has already heard, but
this is no more an imitation than a human producing the
same vowels as another when responding to a question
for example. The interactions of agents are not
structured, there are no roles and no coordination. In
fact, they have no social skill at all. They do not
distinguish between their own vocalizations and those of
others. They do not communicate. Here, ‘‘communica-
tion’’ refers to the emission of a signal by an individual
with the aim of modifying the state of at least one other
agent, which does not happen here. Indeed, agents do
not even have means to detect or represent other agents
around them, so it would be difficult to say that they
communicate. Finally, not only there are no social force
which act as a pressure to distinguish sounds, but there
are no internal forces which act as a pressure to have a
repertoire of different discrete sounds : indeed, there are
no repulsive forces in the dynamics which update the
preferred vectors of the neural maps.
6. Dynamics

We will study the dynamics of the artificial system in
two different cases: the first one is when the abstract
linear articulatory synthesizer is used, while the second
one is when the realistic articulatory synthesizer is used.

6.1. Using the abstract linear articulatory/perceptual

mapping

The present experiment used a population of 20
agents. Let us describe first what we obtain when agents
use the abstract linear articulatory synthesizer.
Initially, as the preferred vectors of neurons are

randomly and uniformly distributed across the space,
the different targets that compose the vocalizations
of agents are also randomly and uniformly distributed.
Fig. 4 shows the preferred vectors of the neurons of the
perceptual map of two agents. We see that they cover
the whole space uniformly. They are not organized.
Fig. 5 shows the basins of attraction associated with the
coding/decoding recurrent process that we described
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Fig. 4. Perceptual neural maps of two agents at the beginning (the two

agents are chosen randomly among a set of 20 agents). Units are

arbitrary. Each of both square represents the perceptual map of one

agent.

Fig. 5. Representation of the same two agent’s attractor field initially.

Fig. 6. Neural maps after 2000 interactions, corresponding to the

initial state of Fig. 4. The number of points that one can see is fewer

than the number of neurons, since clusters of neurons have the same

preferred vectors and this is represented by only one point.
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earlier. The beginning of an arrow represents a pattern
of activations at time t generated by presenting a
stimulus whose coordinates correspond to the coordi-
nates of this point. The end of the arrow represents the
pattern of activations of the neural map after one
iteration of the process. The set of all arrows provides a
visualization of several iterations: start somewhere on
the figure, and follow the arrows. At some point, for
every initial point, you get to a fixed point. This
corresponds to one attractor of the network dynamic,
and the fixed point to the category of the stimulus that
gave rise to the initial activation. The zones defining
stimuli which fall in the same category are visible on the
figure, and are called basins of attractions. With initial
preferred vectors uniformly spread across the space, the
number of attractors as well as the boundaries of their
basins of attractions are random.
The learning rule of the acoustic map is such that it

evolves so as to approximate the distribution of sounds
in the environment (but remember this is not due to
imitation). All agents produce initially complex sounds
composed of uniformly distributed targets. Hence, this
situation is in equilibrium. Yet, this equilibrium is
unstable, and fluctuations ensure that at some point, the
symmetry of the distributions of the produced sounds
breaks: from time to time, some sounds get produced a
little more often than others, and these random
fluctuations may be amplified through positive feedback
loops. This leads to a multi-peaked distribution: agents
get in a situation like that of Fig. 6 which corresponds to
Fig. 4 after 2000 interactions in a population of 20
agents. Fig. 6 shows that the distribution of preferred
vectors is no longer uniform but clustered (the same
phenomenon happens in the motor maps of the agents,
so we represent here only the perceptual maps, as in the
rest of the paper). Yet, it is not so easy to visualize the
clusters with the representation in Fig. 6, since there are
a few neurons which have preferred vectors not
belonging to these clusters. They are not statistically
significant, but introduce noise into the representation.
Furthermore, in the clusters, basically all points have the
same value so that they appear as one point. Fig. 7
shows better the clusters using the attractor landscape
that is associated with them. We see that there are now
three well-defined attractors or categories, and that there
are the same in the two agents represented (they are also
the same in the 18 other agents in the simulation). This
means that the targets the agents use now belong to one
of several well-defined clusters, and moreover can be
classified automatically as such by the recurrent coding/
decoding process of the neural map. The continuum of
possible targets has been broken, sound production is
now discrete. Moreover, the number of clusters that
appear is low, which automatically brings it about that
targets are systematically re-used to build the complex
sounds that agents produce: their vocalizations are now
compositional. All the agents share the same speech
code in any one simulation. Yet, in each simulation, the
exact set of modes at the end is different. The number of
modes also varies with exactly the same set of
parameters. This is due to the inherent stochasticity of
the process. We will illustrate this later in the paper.
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Fig. 7. Representation of the attractor fields of 2 agents after 2000

interactions. The number of attractors is fewer that the number of

points in the last figure. This is because in the previous figure, some

points corresponded to clusters and other to single points. The broad

width of the tuning function makes that the landscape is smoothed and

individual point which are not too far from clusters do not manage to

form their own basin of attraction.

Fig. 8. Evolution of the entropy of the distributions of the preferred

vectors of the acoustic neurons of all agents.
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It is very important to note that this result of
crystallization holds for any number of agents (experi-
mentally), and in particular with only one agent which
adapts to its own vocalizations. This means that the
interaction with other agents (i.e. the social component)
is not necessary for discreteness and compositionality to
arise. But what is interesting is that when agents do
interact, then they crystallize in the same state, with the
same categories. To summarize, there are so far two
results in fact: on the one hand discreteness and
compositionality arise thanks to the coupling between
perception and production within agents, on the other
hand shared systems of phonemic categories arise
thanks to the coupling between perception and produc-
tion across agents.
We also observe that the attractors that appear are

relatively well spread across the space. The prototypes
that their centers define are thus perceptually quite
distinct. In terms of Lindblom’s framework, the energy
of these systems is high. Yet, there was no functional
pressure to avoid close prototypes. They are distributed
in that way thanks to the intrinsic dynamics of the
recurrent networks and their rather large tuning
functions: indeed, if two neuron clusters just get too
close, then the summation of tuning functions in the
iterative process of coding/decoding smoothes their
distribution locally and only one attractor appears.
A last point to make is that what we call ‘‘crystal-

lization’’ here is not exactly a mathematical conver-
gence, but a practical convergence of the system. Indeed,
as we explained in the previous sections, there are only
attractive forces that act on the preferred vectors of
neurons. No repulsive force is present. As a conse-
quence, as these forces are always strictly positive
because of the gaussian tuning function, the point of
mathematical convergence of the system is when all
preferred vectors are clustered in one single point. Yet,
this mathematical convergence can not be reached in
practice. Indeed, because we use a gaussian tuning
function, this attractive force becomes exponentially low
as stimuli get further from a given preferred vector. This
has the consequence that there is a first phase in the
system during which a number of clusters form, and
sometimes ‘‘melt’’, until a state is reached in which the
attraction between clusters is so small that no new
melting of clusters happens before billions of time steps:
in practice it is impossible to wait this amount of time,
which is much longer than the lifetime of agents. This
evolution can be illustrated by plotting the evolution of
the entropy of the distribution of the preferred vectors
of all agents, as on Fig. 8. We see a first phase of sharp
decrease in the entropy, and then a plateau. We use the
term crystallization and stop the simulations when this
entropy plateau has been reached (i.e. when the entropy
value does not change for several thousands time steps).
Finally, it has to be noted that a crucial parameter of

the simulation is the parameter s which defines the
width of the tuning functions. All the results presented
are with a value 0.05. In Oudeyer (2003), we present a
study of what happens when we tune this parameter.
This study shows that the simulation is quite robust to
this parameter: indeed, there is a large zone of values in
which we get a practical convergence of the system in a
state where agents have a multi-peaked preferred vector
distribution, as in the examples we presented. What
changes is the mean number of these peaks in the
distributions: for example, with s ¼ 0:05; we obtain
between 3 and 10 clusters, and with s ¼ 0:01; we obtain
between 6 and 15 clusters. If s becomes too small, then
the initial equilibrium of the system becomes stable and
nothing changes: agents keep producing inarticulate and
holistic vocalizations. If s is too large, then the practical
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Fig. 9. Neural map and attractor field of one agent within a

population of 20 agents, after 200 interactions. Here the realistic

articulatory synthesizer is used. The triangle which appears correspond

to the so-called ‘‘vocalic triangle’’ (Ladefoged and Maddieson, 1996).

Fig. 10. Distribution of vowel inventories sizes in emergent and

UPSID human vowel systems.
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convergence of the system is the same as the mathema-
tical convergence: only one cluster appears.

6.2. Using the realistic articulatory/acoustic mapping

In the previous paragraph, we supposed that the
mapping from articulations to perceptions was linear. In
other words, constraints from the vocal apparatus due
to non-linearities were not taken into account. This was
interesting because it showed that no initial asymmetry
in the system was necessary to get discreteness (which is
very asymmetrical). In other words, this shows that
there is no need to have sharp natural discontinuities in
the mapping from the articulations to the acoustic
signals and to the perceptions in order to explain the
existence of discreteness in speech sounds (we are not
saying that the non-linearities of the mapping do not
help, just that they are not necessary).
Yet, this mapping has a particular shape which

introduces a bias into the pattern of speech sounds.
Indeed, with the human vocal tract, there are articu-
latory configurations for which a small change gives a
small change in the produced sound, but there are also
articulatory configurations for which a small change
gives a large change in the produced sound. While the
neurons in the neural maps have initially random
preferred vectors with a uniform distribution, this
distribution will soon become biased: the consequence
of non-linearities will be that the learning rule will have
different consequences in different parts of the space.
For some stimuli for which there are many articulatory
configurations which produce similar sounds, a lot of
motor neurons will have their preferred vectors shifted a
lot, and for other stimuli, very few neurons will have
their preferred vectors shifted. This will very quickly
lead to non-uniformities in the distribution of preferred
vectors in the motor map, with more neurons in the
parts of the space for which small changes give small
differences in the produced sounds, and with fewer
neurons in the parts of the space for which small
changes give large differences in the produced sounds.
As a consequence, the distribution of the targets that
compose vocalizations will be biased, and the learning of
the neurons in the perceptual maps will ensure that the
distributions of the preferred vectors of these neurons
will also be biased.
We are going to study the consequence of using such a

realistic vocal tract and cochlear model in the system.
We use the models described earlier. To get an idea of
the bias imposed by this mapping, Fig. 9 shows the state
of the acoustic neural maps of one agent after a few
interactions (200) between the agents.
A series of 500 simulations was run with the same set

of parameters, and each time the number of vowels as
well as the structure of the system was checked. Each
vowel system was classified according to the relative
position of the vowels, as opposed to looking at the
precise location of each of them. This is inspired by the
work of Crothers (1978) on universals in vowel systems,
and is identical to the type of classification performed in
de Boer (2001). The first result shows that the
distribution of vowel inventory sizes is very similar to
that of human vowel systems (Ladefoged and Maddie-
son, 1996): Fig. 10 shows the 2 distributions (in plain
line the distribution corresponding to the emergent
systems of the experiment, in dotted line the distribution
in human languages), and in particular the fact that
there is a peak at 5 vowels, which is remarkable since 5 is
neither the maximum nor the minimum number of
vowels found in human languages. The prediction made
by the model is even more accurate than the one
provided by de Boer (2001) since his model predicted a
peak at 4 vowels. Then the structure of the emergent
vowel systems was compared to the structure of vowel
systems in human languages as reported in Schwartz et
al. (1997). More precisely, the distributions of structures
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Fig. 11. Distribution of vowel inventories structures in artificial and UPSID human vowel systems. This diagram uses the same notations than the

one in Schwartz et al. (1997). Note that here, the vertical axis is also F2; but oriented downwards.

Fig. 12. Neural map and attractor field of the agent of Fig. 9 after

2000 interactions with other 20 agents. The corresponding figures of

other agents are nearly identical. The produced vowel system is here an

instantiation the most frequent vowel system in human languages: /a,

e, i, o, u/.
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in the 500 emergent systems were compared to the
distribution of structures in the 451 languages of the
UPSID database (Maddieson, 1984). The results are
shown in Fig. 11. We see that the predictions are rather
accurate, especially in the prediction of the most
frequent system for each size of vowel system (less than
8). Fig. 12 shows an instance of the most frequent
system in both emergent and human vowel systems. In
spite of the predictions of one 4-vowel system and one 5-
vowel system which appear frequently (9.1 and 6 percent
of systems) in the simulations and never appear in
UPSID languages, these results compare favourably to
those obtained in de Boer (2001). In particular, we
obtain all this diversity of systems with the appropriate
distributions with the same parameters, whereas de Boer
had to modify the level of noise to increase the sizes of
vowel systems. Yet, like de Boer, we are not able to
predict systems with many vowels (which are admittedly
rare in human languages, but do exist). This is certainly
a limit of our model. Functional pressure to develop
efficient communication systems might be necessary
here.
7. Conclusion

This paper has presented a mechanism which provides
a possible explanation of how a speech code may form
in a society of agents which do not already possess
means to communicate and coordinate in a language-
like manner (as opposed to the agents described in de
Boer (2001); Kaplan (2001) or Oudeyer (2001b)), and
which do not already possess a convention and complex
cognitive skills for linguistic processing (as opposed to
the agents in Kirby (2001) for example). The agents in
this paper have in fact no social skills at all. We believe
the value of the mechanism we presented is as an
example of the kind of mechanism that might solve the
language bootstrapping problem. We show how one
crucial pre-requisite, i.e. the existence of an organized
medium which can carry information in a conventional
code shared by a population, may appear without
linguistic features being already there.



ARTICLE IN PRESS
P.-Y. Oudeyer / Journal of Theoretical Biology 233 (2005) 435–449448
The self-organized mechanism of this system appears
as a necessary complement to the classical neo-
Darwinian account of the origins of speech sounds. It
is compatible with the classical neo-Darwinian scenario
in which the environment favors the replication of
individuals capable of speech. In this scenario, our
artificial system plays the same role as the laws of the
physics of droplets in the explanation of the hexagonal
shape of wax cells: it shows how self-organized
mechanisms can facilitate the work of natural selection
by constraining the shape space. Indeed, we show that
natural selection did not necessarily have to find
genomes which pre-programmed the brain in precise
and specific ways so as to be able to create and learn
discrete speech systems. The capacity of coordinated
social interactions and the behavior of imitation are also
examples of mechanism which are not necessarily pre-
required for the creation of the first discrete speech
systems, as our system demonstrates. This draws the
contours of a convincing classical neo-Darwinian
scenario, by filling the conceptual gaps that made it
stay an idea rather than a real working mechanism.
Furthermore, this same mechanism accounts for

properties of the speech code like discreteness, compo-
sitionality, universal tendencies, sharing and diversity.
We believe that this account is original because: (1) only
one mechanism is used to account for all these proper-
ties and (2) we need neither a pressure for efficient
communication nor innate neural devices specific to
speech (the same neural devices used in the paper can be
used to learn hand–eye coordination for example). In
particular, having made simulations both with and
without non-linearities in the articulatory/perceptual
mapping allows us to say that in principle, whereas the
particular phonemes which appear in human languages
are under the influence of the properties of this
mapping, their mere existence, which means the
phenomenon of phonemic coding, does not require
non-linearities in this mapping but can be due to the
sensory–motor coupling dynamics. This contrasts with
the existing views that the existence of phonemic coding
necessarily needs either non-linearities, as defended by
Stevens (1972) or Mrayati et al. (1988), or an explicit
functional pressure for efficient communication, as
defended by Lindblom (1992).
Models like the one of de Boer (2001) are to be seen as

describing phenomena occurring later in the evolution-
ary history of language. More precisely, de Boer’s
model, as well as for example the one presented in
Oudeyer (2001b) for the formation of syllable systems,
deals with the recruitment of speech codes like those that
appear in this paper, and studies how they are further
shaped and developed under functional pressure for
communication. Indeed, if we have here shown that one
can already go a long way without such pressure, some
properties of speech can only be accounted for with it.
An example is the existence of large vowel inventories
(Schwartz et al., 1997).
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