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AbstracB IAC was initially introduced as a developmental e x i sting work in machine | earn

mechanism allowing a robot to selorganize developmental and t he aksislolcsioatteod bies | ear nt

trajectorjes of increasing complexity with.out preprogramming prepared by a human engineer. For example, when learning
the particular developmental stages. In this paper, we argue that hanqeve coordination in robots, the right input and output
IAC and other intrinsicall y motivated learning heuristics could spaces (e.g. arm joint parameters and visual position of the

be viewed as active learning algorithms that are particularly . :
suited for learning forward models in unprepared sensorimotor hand) are typically provided as wels the fact that harelye

spaces with large unlearnable subspaces. Then, we introduce acoordination is an interesting skill to learn. But a
novel formulation of IAC, called R-IAC (Robust Intelligent developmental robot is not supposed to be provided with the
Adaptive Curiosity), and show that its performances as an right subspaces of its rich sensorimotor space and with their
intrinsically motivated active learning algorithm are far superior ~ association with appropriate skills: it would for exglenhave

to IAC in a complex sensorimotor space where only a small to discover that arm joint parameters and visual position of the
subspace is neither unlearnable nor trivial. V¢ also show results hand are related in the context of a certain skill (which we call

'F”ir‘]"’n":h trt'e 'e"’r‘: nt fcr)rward mr?]de'n'sir:e“sifw'”ra COE’:r?I!Ii?]Ch?hme. handeye coordination but which it has to conceptualize by
a'y, an opensource accompanying sottware containing these qo10 304 in the middle of a complex flow of valuesan
algorithms as well as tools to reproduce all the experiments . . .
richer set of sensations and actions.

presented in this paper is made publicly availble.
B. Intrinsic motivations

Index Term® active learning, intrinsic motivation, exploration, .
g P Developmental robots, like humans, have a sharp need for

developmental robotics, artificial curiosity, sensorimotor

learning. mechanisms that may drive and seifanize the exploration
of new skills, as well as identify and organize useful-sub
I. INTRINSICALLY MOTIVATED EXPLORATION spaces in its aoplex sensorimotor experiences. Psychologists
AND LEARNING have identified two broad families of guidance mechanisms

which drive exploration in children:

Der\]/elo_pmen';]al rol_?lotlcs zpproaches_ arr-f d_studymgl) Social learning, which exists in different formsuch as
mechanisms thanay allow a robot to continuously diSCOVer i 1us  enhancement, emulation, imitation  or

and learn new skills in unknown environments and in a life ; : ; ;
i . ) emonstrationand which many groups try to implement in
long t|mg scale [1], [_2]. A main aspect is the fact _that the set Of?obots[e.g.3,4,5,6,7,8,9,10,11,12,13;]14

these skills and their functions are at least partially unknow

to tlz_e éangm(zer whlo :j:meévaj thde r(_)bcl;tl |n|ft|ally, aqd arr1e alsct)) robotics research groups (e.g. s&&,16,17,18,19,79 and
taskindependent. Indeed, a desirable feature Is that robotg, o ificylar intrinsic  motivation, respmsible  of

should be capable of exploring and developing various kind%pontaneous exploration and curiosityhiamans, which is

of skills that they may reise later on for tasks that they did the mechanismunderlving the alarithms presented in this
not foresee. This is what hagns in human children, and this dpaper I ying o P I I

is also why developmental robotics shall import concepts an
mechanisms from human developmental psychology.

™) Internal guiding mechanisms also studied by many

Intrinsic motivations are mechanisms that guide curiesity
A. The problem of exploration in opeended learning driven exploration, that were initially studied in psychology

Like children, the fAfreedol ° NPY6 alsq heyic,appr g
robots to learn an open set of skills also poses a very import& Ine_learningand roboticsresearchershave
problem: as soon as the set of motors and sensors is i po§e_d that such mechan_lsm mlght be crucial for—.s-elf
enough, the set of potential skills becaagtremely large and organizing developmental trajectories as well as for guiding
complicated. This means that on the one hand, it is impossiBI Iearnlr;gz ofgeAneriiI and (;_eusa_bléqkl: n machlﬂes afnd
to try o learn all skills that may potentially be learnt becaursrrgpe?:istiorgalizi?{g intrinizgemotil\\:ztris(:;y haveakr))gg%agreesentg(rj in
there is not enough time to physically practice all of the ;

Furthermore, there are many skills or goals that the chiId/roll?F\e literature ¢.9. 29,30,31,32,33,34,28,27 B%and see 77]
could imagine but never be actually learnable, because t Qar/ a gen(_eral OVETVIEW. S_everalxmenments have been
are eithettoo difficult or just not possible (for example, tryingconducted in reaorld robotic setups, such as i87[36,34

to learn to control the weather by producing gestures Yléhere an |nt(|n3|§_motlvat|or} SﬁTeme\_/as sho_wn to aII(?w .for
hopeless). This kind of problem is not at all typical of thd"€ Progressive discovery of skills of increasing complexity,

a |

i%fﬂgg} ar&% qre npw als?? beipg,approached JP%)?FiS’\CGo p mer
R
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such as reaching, biting and simple vocal imitatiothvan uses of the motor primitivesexe learnt in spite of not having
AIBO robot. In these experiments, the focus was on the stubgen specified initially. In36], this systenallowed an AIBO
of how developmental stages could smifjanize into a robot, equipped with parameterized central pattern generators
developmental trajectory without a direct fs@ecification of ( CP G0 s ) i n a 2cé and @ PBPOFnperteptunal s p a
these stages and their number. space,to learn a variety of locomotion skills. Yet, these
previous results focused on qualitative properties of the self
This paper aim$o propose a new vewsi of thelntelligent organized developmental trajectories, ahC was not
Adaptive Curiosityalgorithm (IAC) presented in47], called optimized for efficient active learning per se.
R-IAC for Robust Intelligent Adaptive Curiositgnd to show
that it can be used as an efficient active learning algorithm tdHere, we present a novel formulation ®AC, called
learn forwardand inversemodels in a comple unprepared RobustIAC (R-IAC), and show that it can efficiently allow a
sensorimotor space with unlearnable subspdeathermore, roba to learn actively, fast and correcfiorward and inverse
together with the complete pseudode, we provide access tokinematicmodekin an unprepared sensorimotor spakewe
accompanyingpublicly available opesource software that will explain, RIAC introduces four main advances compared
implements the algorithm and contains tools to reproduce &l IAC:
the experiments presented in this paper. 1) Probabilistic action selectioninstead of choosing actions
to explore the zone of maximal learning progres a given
Il. ROBUSTINTELLIGENT ADAPTIVE CURIOSITY (R-IAC) AS moment in time (except in the random action selection mode),

ACTIVE LEARNING R-IAC explores actions on sensorimotor subregions
. . robabilistically chosen based on their individual learnin
A. Developmental Active Learning grogreSS' y g

In IAC, intrinsic motivation is implemented as a heuristic®) Multi -resolution monitoring of learning progressin R-
which pusles a robot to explore sensorimotor activities forAC, when sensorimotor regions are split into subregions,
which learning progress is maximale. subregions of the parent regions are kept and one continues to monitor learning
sensorimotor space where the predictions of the learnt fOfW%ﬁbgress in them, and they continue to be eligible regions for
model improve fastesf]. Thus, this mechanism regulatesaction selection. As a consequence, learning progress is
actively the growth of congxity in sensorimotor exploration monitored simultagowsly at various regions scales, as

and can be conceptualized as developmental active opposed to IAC where it was monitored only in child regions
learning algorithm This heuristics shares properties withand thus at increasing small scales;

statistical techniquesiioptimal experiment design (e.®7])

where exploration is driven by expected imf@tion gainas 3) A new region splting mechanismthat is based on the

well as withattentionand motivation mechanisms proposed irgirect optimizationof learning progress dissimilaritgmong
the developmentasychology literature (e.g. [2238], or see regions;

[23] for a review)where it has been proposed that exploration
is preferentially focused on activities of interriad difficulty  4) The introduction of a third exploration modaybridizing
or novelty B940], but differs significantly from many active |earning progress heuristics with more classic heuristics based

learning heuristics in machine learning in which exploration ign the exploration of zones of maximal unpredictability;
directed towards regions where the learnt model is maximally

uncertain or where prettions are maximally wronfg.g. [41, o ) )

42], see 27] for a review. As argued in27], developmental B. Prediction Machine and Analysis of Error Rate

robots are typically faced with large sensorimotor spaces

which cannot be entirely learnt (because of time limits amongWe consider a robot assgstem with motdactionschannels

other reasons) and/or in which subregions are not learnable and sensorystate channel$. M and S can be lownlevel

(potentially because it is too complicated for the learner, @uch as torque motor values or touch sensor values, or higher

because there are no correlations between the input and outp&t v e | such as a fAgo forward o

variables seeexamplsin the experiment sectionand 27]). fif ace detectedo vi Scaadtorrespemis or .

In these sensorimotor spaces, exploring zones of maxintalinternal sensors measuring the internal state of the robot or

uncertaintyor unpredictability is bound to be an inefficientencoding past values of the sensors. Real valued action/motor

strategysince it would direct exploration towards subspaces iparameters are represented as a veEid), and sensors, as

which there are no learnable correlatiomsile a heuristics ("), at a time tNE (") represents a sensoor context, i.e.

based on learning progress allows to avoid unlearnable patise concatenation of both motors and sensors vectors.

as well as to focusexploration on zones of gradually

increasing complexity. We also consider a Prediction MachiR# (Fig. 1), as a

system based on a learning algorithm (neural networks, KNN,

In [27, 34, experiments showed how IAC allowed an AIBOetc.), which is able tocreate a forward model of a

robot, equipped with a set of paraerwzed motor primitives sensorimotor space based on learning examples collected

(in a 5 DOF motor space), as well as a set of perceptutdrough seHdetermined sensorimotor experiments.

primitives (in a 3 DOFperceptual space), to selfganize a Experiments are defined as series of actions, and consideration

developmental trajectoryn which a variety of affordances of sensations detected after actions are performed.
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An experiment is represented by the G8E("),7("I+ )),
and denotes theensorjstate consequenc8(i+1) that is Therefore, consideringdQ s as the cardinality ofQ we
observed when actions encodedMift) are performed in the define the Learning Progress|} . , also notedd |, in
sensorystate contextS(t). This set is called d&iearning region=|. and at a given moment in tinae
exemplaro. After eachtrial, the prediction machinPM gets

this data and incrementally updates the forward model that it Q| 5 Q| .
is encoding, i.e. the robot incrementally increases its B"Q|'Q| @ a|q | :Q)
knowledge of the sensorimotor space. In this update process, 4 r = 2

PM is able to compare, for a given cext N'E( 4, differences
between predicted sensatior)é<« ) (estimated using the
created model), and real consequeries+ ). It is then able
to produce a measure of erggr<« ), which represents the
quality of the model for sensorimotor cont@¥ ( 4. This is
summarized irFig. 1.

Becaused || is computed over theecent past through a
sliding window, it is not necessary to memorize all past
learning exemplars and makes the whole system both
computationally efficient in terms of speed and memory
usage Actually, in a given region, only the last
1 ws «€Xemplas need to be memorized, withes > — being
the splitting parameter described beIoM-. is then used as a

Environment +

physical realization of measure of interestingness the action selection scheme
action outlined below. The more a region is characterized by learning
lmw progress, the mie it is interesting, and the more the system
Consequence will perform experiments and collect learniegemplarsthat
Input = Prediction of S(t+1) fall into this region. Of course, as exploration goes on, the

action + context
SM(t)

cnniequence
S(t+1)

learnt forward model becomes better in this region and
learning progress might decrease, leading to a decrease in the
interestingness of this region.

Prediction
Machine

Actual error
e = |5(t+1)- S(t+1)

/ Prediction Analysis Machine PAM,,

) o . . ﬂvolutionoferrorsovertime, inside the regionh

Fig. 1. The prediction learning machine (e.g. a neural network, an S\ e
) i \ e m-g
Gaussian process regression based algorithm) 1 e o o em.’g .l e
£ e i ¢ oo o

Then, we consider a module able to analyze leamingress mors - — b
over t|m_e,for a given subreglc_)d_. of the se_nsonmo?or space Mean of wrror rate Mean of wrror rate
SM. This systemcalled Prediction Analysis MachineAM inafarpast:mp  inanear past:my
(Fig. 2) considersthe set . of all thed experimented ™~ ~— ~
exemplarsEx = ME."I,n. "I+ g« O La, & LP, =mg-my >
collected |nS|de| ., sortedby their executionorder (from the

older to the last performgd
Fig. 2. Internal mechanism dthe Prediction Analysis Machin&AE,

Ex r']'E "l ,r'] |+ - , assopiated to a given sub(egi#)n c_>f _the sensorimoto_r s_pac@his _modul‘
) considers errors detected in prediction by the Prediction Madhimganc
= Ex , = nE "I, "I+ m ¢ , returns a value representative of the learning progress in the region. L

8 ,E e ey progress is the derivative of errors computed over the -faskamplar
. 8, NE.T.n"I+ g @ . collected in the subregicf, .

wheregg < s the predictionerrors ofPM associated to  To precisely represent the learning behavior inside the whole
the prediction ofy. "I+ givenniE. 1. sensorimotor space and differentiate its various evolutions in

The Prediction Analysis MachindPAM monitors the various subspaces/subregions, differBtM modules, each
learning processinside. by analyzing the evolution of  associated to a different subregign of the sensorimotor
errors More precisely, the system computes thgalue space,need to be built. Therefore, the learning progress
oppositeto the derivative of errorswhich is calledLearning 4 ||, provided as the output values of eaeAM becomes
Progress |.. . This value is computedsinga sliding window  representative of the interestingness of the associated region
which contains the (-= 2.°Q'Q> 1) most recent exemplars 4, . Initially, the wholespace is considered as one single
of the consideredegion=|. D EXy L EX 41,8 BExy | (if region=| , associated to one PAM, which will be

the region contains less thanexamplars, then the learning Progressively split into subregions with their oRAM as we
progress is computed over a shorter window with all theill now descrite.
current collected exemplars).
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C. The Split Machine

Sensations S(t+1) Motor Action

External
Environment

Regions

Learning Exemplar
SM(t),S(t + 1))

Machine

Prediction
Machine

Action
Selection

LP,, max,

Errore(0)

Feedback

Fig. 3. General architecture BXC andR-IAC. The Prediction MachinEM
is used to create a forward model of the woaldl measures the quality of
predictions (errors values). Then, a split machine cuts the sensorimotc
into different regions, whose quality of learning over time is examint
Prediction Analysis Machines. Then, an Action Selection system ista
choose experiments to perform.

The Split MachineSpM (Fig. 3) is both responsible of
identifying the region and®AM corresponding to a given
SM(t), but also responsible of splitting (or creatingRfAC
where parent regions are kept in use) -mdions from
existing regions.

1) Region Implementation

We use a tree representation to store the list of regions
shown inFig. 4 The main node represents the whole spac
and leafs are subspaceg.) and'E(") are here normalized
into [0; 1]¢. The mairregion (first node), calledy, represents
the whole sensorimotor space. Each region sterdslFO

Dim 1=>]0.7
RZ

10.7;1}

{0;1}

Dim 1 J<0.7

Dim 2 =10.5
R,

{0,0.7)

{0.5;1})

Dim 2 1< 0.5

Fig. 4. The sensorimotor space is iteratively and recursively split inte
spacescallediir e gi on s 0. "Y;Hsaresponsiblgay manitoring thi
evolution of the error rate in thenticipationofc onsequences
actions if the associated contexts a@vered by this region.

2) IAC Split Algorithm

In thelAC algorithm, the idea was to find a split such that the
two sets of exemplaiato the two subregions would minimize
the sum of the variances of] < components of
exemplars of each seteighted by the number of exemplars
of each setHence, the splitakes place in the middle of zones
of maximal change in the functigfE(") © A('I+ ).

Mathematically, we consider, NE «<,n <« as

the set okexemplarpossessed tlyneregion=| ¢ - Let us denote
"Qa cutting dimension ans, an associated cutting value.
Then, the split of;into «;,; and ¢;,, is done by

choosing@and Ugsuch that:

(1) All the exemplars NE(4,1( <« ) :: of » .., have a
as @tomponent of theifE <« smaller thaniy
e(2)All the exemplars NE(4,n( < ) : of <., have a
'@ component of theiffE < greater thanig
(3) The quantity :

(first-in first-out) list of recentlycollected exemplarsthat it 00 Qg =
F:overs with .a maximum Iength oﬂ“@.When this threshold S*;.1S, 1 ¢ | NE <4 <« N e
:Zée:acheddlﬁerentmechanlsms are triggered liiC andR F S8, N4 | NE <4f < Noeis
1. in IAC, the region is split into two daughter regionsIS minimal, where . 2
according to the mechanism described below, and the Bys U Bens@
parent region is deleted , S = =
2. in R-IAC: if the region is a leaf region, then it is split into S8
two daughteregions with the mechanism described below, . ] ) o
but the initial region is kept and becomes a parent regionWhereSis a set of vectors, argh its cardinal. Finding the
If the region is already a parent region, then it is not spf@*act optimal split would be computationally too expensive.
anymore and any subsequent exemplars added to the FIFes this reason, we use the following heuristics for
list provokes the deletion of tredest exemplar already in Optimization: for each dimensio@we evaluatel;; cutting
the list; Ugequally spaced betwedhe extrema values of ; , thus we
3. In both IAC and R-IAC, glitting is done with evaluatel;;.| 'Q splits in total, and the one with minimal

hyperplanes perpendicular to one dimension. An examplgy¢ Qi is finally chosen. This computationally cheap

of split execution is shown in Fig4, using a two
dimensionalnput spacelAC andR-IAC differ in the way
the hyperplane is chosen.

heuristics has produced acceptable results Ih the
experiments we ran so far. It could pattally be improved by
allowing region splits cutting multiple dimensions at the same
time in conjunction with a Mont€arlo based sampling of the
space of possible splits.
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3) R-IAC Split Algorithm We now present the different exploration modes used by the

Action Selection Machine, ilAC andR-IAC algorithm:
In R-IAC, the splitting mechanism is based on comparisons

between the learningrogressesn the two potential child 1) Mode I Random Babbling Exploration

regions. The principal idea is to perform geparation which

maximizes the dissimilarity of learning progresscomparing  The random babbling mode corresponds to a totally

the two created regions. This leads to the direct detection mhdom exploration réndom choice oE "I with a unifam

areas where the learning progress is maximal, and to sepaugisgribution), which does not consider previous actions and

them from others (see Fig). This contrasts withAC where context. This mode appears in botAC and R-IAC

regions were built independently of the notion of learninglgorithm, with a probability=s typically equal tc30%.

progress.

Reusing the notations of the previous sectionRitAC, the 2) Mode 2 Learning Progress Maximization Exploration

split ofe ;into » ;,; and « ;, , is thendone by choosin@§and

Ugsuch that: This mode chosen with grobability=m typically equal to

00 Qg = 00z, 004, 2 70% in IAC and 60% in R-IAC (which means this is the

dominant mode)aims to maximize learning progress, but with

is maximal, wheredd; ., andddy ., are the learning progress two different heuristics itAC andR-1AC :

computed inside ;. and ¢ ;5.
P e e IAC: In the IAC algorithm, mode2 action selection is

straightforward: among the leaf regions that cover the current

stater| "I (i.e. for which there exists'B "I such thatiE "l is
P in the region there are typically manyjhe leaf region which
learning progress is maximal is found, atietn a random
b actionwithin this region is chosen
Time .

R-IAC: In the R-IAC algorithm, we take into account the
fact that many regions may have close learning progress
Fig. 5. Evolution of the sensorimotor regions over tifflee whole space values and thus should be selected roughly equally otign,

progressively subdivided in such a way that the dissimilarity of eact  taking a probabilistic approadh region selectionT his avoids
region in terms of learning progreissnaximal. the problems of awinner takeall strategy when the region

splits do not reflect well the underlying learnability structure
of the sensorimotor spaceurthermore, instead of focusing on
the leaf regions like iNAC, R-IAC continues to monito
learning progress in node regions and select theheif have

We present here an implementation of Action Selectiofore learning progress: thus learning progress is monitored
MachineASM. TheASM decides a actionsE <« to perform, simultaneously at several scales in the sensorimotor spetce.
given a sensory contexir) «. (See Fig.3.). The ASM ys give more details:
heuristics is based on a mixture of sevenatles which differ
betWeenIAC and R-IAC. BOth IAC and R-IAC algorithms 1'[ Probabi”stic approacho region Selection
share the same global loop in which modes are chosen

probabilistically: A region'Y; is chosen among all eligible regiois= {'Y.
(i.e. for which there exists ‘& "I such that|E "I is in the

D. Action Selection Machine

Outlipe of the g!obal Ioop.of IAC and .R -IAC algorithms region¢) with a probability |- proportional to its learning
fl Action Selection Machine ASM given S(t), execute an progressiity, stored in the associatéghE. :

action E « using the mode (=) with probability == and

based on data stored in the region tnegh = N { , } for D& a'Q 00es
IAC and= v { , , }for R-IAC; k= e
{ Prediction Machine PM: Estimate the predicted Big; PUq G'Q 00qS

consequenc#¢ using the prediction machiiM ;
1 External Environment: Measure the real consequedeg T Multi-resolution monitoring of learning pogress

1 Prediction Machine PM: Compute the errog ¢ = ) o )
+H'(‘||< _”‘ ); In thelAC algorithm, the estimation of learning progress only

happens in leaf regions, which are the only eligible regions for

. . ) : .. action selection. IR-IAC, learning progress is monitored in

ﬂSEllt" M'af’:hlne Sp(;\/l. upda.te the region tree Wlthal | regions created during the
nE .I,.n I+ e.m L *. ' . us to track learning progress at multiple resolution in the

l Predl.ct|on AnaIyS|.s Machm_e PAM: Updf”‘te evgluatlon of sensorimotor space. This implies that when a new exemplar is
learning progress in the regions that covgg "I ,n "I+ available,R-IAC updates the evaltian of learning progress

1 Update theprediction machine PM with AE "1 ,n "I+

in all regions that cover this exemplar (but only if the
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exemplar was chosen randomly, i.e. not with m@&leas {If mode =mode 2
described below). Because regions are created in-dawp . . 00y @' @pj.aq 00
manner and stored in a tree structure which was already use ©Fora= 08 €, let Ik = N I ——
for fast access in IAC, this new heuristics does not bring By Phed Robgd Moo
computational overload and can be implemented efficiently.
In R-IAC mode 2, when a region has been chosen with the
probabilistic approach and the Hitresolution scheme, a
random actin is chosn within this region.

oLetq gbe a subregion i chosen with probability g,
‘Q~ {0,8 ,€} in a roulette wheel manner
olLet ‘E(") be a random vectosuch that f(E <N
4 g (uniform distribution);
1 If mode =mode 3
3) Mode 3 Error Maximization Exploration oFora= 08 ¢, let |, = |-Yi|)bd 48544 B0
Mode 3 combines a traditional active learning heuristics Bigy 000 6 @544 007
with the concept of learning progress: in mode 3, a region ig oLet 4 gbe a subregion i chosen with probability||-.,
first chosen with the same scheme afRiAC mode 2. But Q~ 0,8 ,¢ in aroulettewheel manner
once this region has been chosen, an action in this region isoLet [qulbe a model of the errors made in predictiorn
selected such that the expected error in prediction will be =||in the past, built with @&-nearest neighbor algoritht
maximal. This is currently implemented through -@darest on t he | ast d learni 4«‘9
neighbor regression of the functigld (¢) © Qo+ 1) which belonging to! gy ¢
allows finding the point of maximal error, to which is added oLet Mmax(t) = ‘;'l D+.J _”_]j < obtained
small random noise (to avoid to query several times exactly b . . <™ . .
. . . X - y sampling uniformly randomly candidate$/(t) ;
the same point). Mode 3 is typicalihosenwith a probability oLet M(t) = Mmax(t) + & with £ a small random numbe
== = 10% in R-IAC (and does not appearliAC). o . R
betweerD andu along a uniform distribution.

9 Execute M(t) ;

E. Pseudecode of RIAC

. o s = MO g gy <l 4
RAAC ([H |, e, e, d] @, 11, Tg}n_ U R 1

_ 1 Estimate the predicted consequenife¢- ) of executing

Init ‘E "l in the environment with stat8(t) using the prediction

i Let={ be the whole space of mathematically possible valueamachinePM (e.g. ILO-GMR, LWPR or a neural net)
of the sensorimotor conte®M(t) (typically a hypercube in § Measure the real consequengél+ after execution of
a '); ‘E "I in the environment with state(t);

TLetd || = be the learning progress associated to 1 Compute the errqg € = v 1 < AT
TLet 4gos =[] (later on in the algorithmd g, will be o . . )

E 9 Update the prediction machirfeM with the new learning
the FIFO I|St I"]'E, "| |rl]i "|+ ,"H "|+ ,O: Where exemplar r']'E "l ,r'] "|+
the set of AE; "I,/ "1+ componerg is the set of
learning exenplars collected inYq, the set of'H "I+
components is the set of associated prediction errorspand{ Let Ex= /E "1, "I+

is a timestampwhose values used to findhe relative order q et be the total number of regions created by the sys
in which each particular learning @mplar was collected g far:

fIInit the prediction/learning machiréM with an empty set oLet © be the maximumo - time stamgn =l..4.;

of learningexemplars oUpdate =|.o=|'by adding HE 17 "I+ H
,0- (and possibly deleting the oldest exemplar

. |—00_p |=|.o4'| = J w9 Whereo-is atime stampused to keep
TLetn(") be the current state; , track of theorder in which this learning ereplar was
TLetq = 4 4 ,8,4. be the set of subregioAsof the stored in relation to others (see below);

sensorimotor space such that there exiskd(@ such thatl 4 |4 = d .. AND 4 &is a leaf reqion
SM@® * 4 a; I{mrigl = s «AND g g

. . Create two new regio and as subregions 0
f For all n, letd |} be the learning progress associated.to gionf; 11 andy .2 9

=|' with'Q a cutting dimension ans, an associate
cutting value optimized through random unifol

1 Select action selection modeodeamongmode 1 mode 2 sanImg Oﬂl p(.)s.s_|bl_e candu_jates and such that: .
andmode 3with probabilities mm, mm, mm; 1.“gey ., is initialized with all the elements i

111f mode =mode 1 ey gthat have @¥component of theifE < smaller

Action Selection

n

>

tem

1S

m

oLet'E(") be a random vector (uniform distribution) than ug
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o Store

2'=ll'=|r+2 is initialized with all the elements ir
=|.04lthat have a@component of theiffE <« greater
than vg

3.The difference between learning progres’.‘ﬂésl and
00 ., measured in both subregions is maximal,

n 5 n 5 2 . . .
00 11 0047 is maximal, where errors are indexg
by their relative order of measurement calculated fi

%l 5 [0 | )
Bug o, B
alog| - R [0k %QQ

o values wherd |f . =

and where—-defines the time window used to compt
learning progress achieved through thequistion of
most recent learning exglars in each region;

the learning progresses EE, and

‘EE, ofthe two newly createdregions;

02

= 0+1

{IFor all regionsq g such thatSM(t) ¥ { g (exceptd; ,; and
4 +2 if a split wasperformed) recompute! | and store the

based on the learning progress values of regions. Thus, the
systembébs memory and
logarithmically with time, which makes iih practice scalable
to manyexisting robotic experimental setups.

1-€2) Regulation of the growthf complexity
d
om As argued in detail in28], the heuristics consisting in
preferentially exploring subregions of the sensorimotor space
where learning progress is maximal has the practical
consequence to lead the robot to explore zones of intermediate
iteconplexity/difficulty/contingency, which has been advocated
by developmental psychologists (e.82[23,38) as being the
key property of spontaneous exploration in humans. Indeed,
subregions which are trivial to learn are quickly characterized
by a low platau in prediction errors, and thus become
uninteresting. On the other end of the complexity spectrum,
subregions which are unlearnable are characterized with a
high plateau in prediction errors and thus are also quickly
identified as uninteresting. In betere exploration first

value; I L E - focuses on subregions where prediction errors decrease fastest,
which typically correspond to lower complexity situations,
and when these regions are mastered and a plateau is reached,
F. Software exploration continues in more complicated subwegiwhere
large learning progress is detected.
An opensource MATLAB -based software library

containing the source code of theC andR-IAC algorithms,
as well as toolsand a tutorialthat allow reproducingall
experiments presented in sections IV and V below is made
publicly available athttp://flowers.inria.fr/riaesoftware.zip

G. Remark

1) Computational complexityf R-IAC

Because regionare stored and accessed irbiaary tree
because only leaves regions can be split and only one regtbat if for example one homogeneous regiaith high
per new exemplar can be split, and because the numberlesfrning progress was split, the winttakeall strategy
exemplars stored in each region is boundeddqy < and
managed by a FIFO list/stackt follows that the total number two subregions, which was very inefficient. Furthermore, the
of regions grows logarithmically with the number of collectednore regions were split, which happened continuously given
exemplars, hence the number of stored exemplars grows al88splittingmechanism, the smaller they becamed because
logarithmically (with a higher but constant multiplicativeonly child regions were monitored, exploration was becoming
factor), and thus global memory usage groagatithmically. > : Ors Of the:
Furthermore, the computational cost of updating the region&nsorimotor space, which was also often quite inefficient.
tree structure is dominated by the cost of the splitting/hile the new sfitting mechanism introduced in this paper
algorithm, which is currently done through Moi€arlo !
simulation: this allows to control the number of samples in thrategy to go around these problems was to find a global
optimization proces and thus can be set to be low to ensuféeéthod whose efficiency depends only loosely on the
fast computation (at the cost of accuracy, but since mulfparticular region split mechanism. The prottiatic choice of
resolution makes the system robust to suboptimal splits, tr§tions makes the system robust to the potentially unnecessary
has a limited impact on the performance of the systeumich _ e _
is also permitte by the fact that learning progress is compute@llows the system to be rather insensitive todfeation ofan

only

over the last- exemplars in each regiofrinally, the

3) Key advances of -RAC over IAC and robustness to
potential inaccurate ashlarge number of region splits

Among the various differences betwelXC and R-IAC,
the two most crucial ones are 1) thmbabilisic choice of
regionsin R-IAC as opposed to the winner take all strategy in
IAC, and 2) themultiresolution monitoring of learning
progressin R-IAC as opposed to the only lowest scale
monitoring of IAC. The combination of these two innovations
allows the system to cope with potentially inaccurate and
supernumerary region splits. Indeed, a problem in IAC was

typically biased the system to explore later on only one of the

increasingly focused on smaller and smadlelregiors of the

allows the systemto minimize inaccurate splitsthe best

split of homogeneous regions, and the multiresolution scheme

increasing number of small regions.

computational cost of action selection grows linearly with the ) )

number of regions, thus logarithmically with the number of) Planning larming progress
collected exemplars, with a very small constant multiplicative

factor since it only consists of basic probability compates

The central contribution of both thtAC and R-IAC
systens lie in the way rewards are defined and computed, i.e.

computati c
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through regiorbased hierarchical multiresolution evaluatiorstatistical regression methods for this kind of space. An
of learning progressThis can be readilyand efficiently re important family of such algorithms ifocally weighted
usedin a traditional active learning regression context whenegression [4h among which LocallyWeighted Projection
the learning problem can be transformed into an immediaRegression (LWPR) has recently showed a strong ability to
reward maximization problem, such as in the standard seléarn incrementally and efficiently forward and inverse models
supervised regression framework in [41], and as we will do in high-dimensional sesorimotor spaces4p,49. Gaussian
the experiments psented in the next sections. Yet, many regbrocessregression hasilso proven to allow for very high
world robotic sensorimotor spaces are such that a given zayemeralization performanced§]. Another approach, based on
of high learning progress might not be immediately reachab@aussiammixture regressiordP,3, is based on the learning of
and thus might require planning through a potentiallthe joint probability distribution of the sensorimotor variables,
uncertain intermediate path which e#o not necessarily instead of learning a forward or an inverse model, and can be
provide learning progress. While the reward systeiR-0AC  used online for inferring specific forward or inverse models by
is currently integrated into an action selection loop which isell-chosen projections of the joint density. Gaussian mixture
compatible with such environments, it does not include suchregression(GMR) has recently shown a number of good
planning capacity and thus the overall architecture isproperties for robot motor learning in a series of -weaitld
suboptimal in that caseHence, theR-IAC reward system robotic experimats [3]. It is interesting to note that these
would need to be integrated with an action selection scherezhniques come from advances in statistical learning theory,
that allowsthe systermto plan and maximize the cumulatedand seem to allow significantly higher performances than for
sum of future expecteR-IAC rewards(i.e. future expected example approachdémsed on neuraletworks[50].
learning progress as definedRalAC) rather than immediate
R-IAC rewards. This could be done like in relatedBecause it is incremental and powdrfLWPR might be a
intrinsically motivated reinforcement learning architecturgood basic prediction algorithm to be used in ReAC
presented in [28,33]and will be achieved and evaluated inframework for conducting robot experiments. Yet, LWPR is
future wok. also characterized by a high number of parametdiese
tuning is not straightforward and thus makes its use not
I1l.  THE PREDICTION MACHINE: INCREMENTAL REGRESSDN optimal for repeated experiments abd@tlAC in various
ALGORITHMS FOR LEARNNG FORWARD AND INVERSE MODELS ~ sensorimotor space€n the other hand3aussianprocesses
and Gaussiamixture regression haviewer parameters (only
The R-IAC system presented above is mostly agnostl(ane parameter for GMRe. the number oGaussiarjsand are
regarding the kind of learning algorithm used to implement tH@u.Ch easler to tune. Unfortunately, they are batch methods
prediction machine, i.e. used to ledforward models. The Which can be computationally very demanding as the dataset
only property that is assumed is that learning must ows. Thus, they cannot be used directly as prediction

incremental, since exploration is driven by measures of tfeachines in th&-IAC framework.

improvement of the learnt forward models as new Iearnin,PhiS is vhy we have developed a regression algorjthatied
exemplars are collected. But among incremental algoisthm ? . .
P 9 gosst ILO-GMR (Incremental Local Online Gaussian Mixture

methods based on neural networks, menimayed learning _ ; ) .
algorithms, or incremental statistical learning techniques Cou_lf&egressmn)/vhlch mixes the ease of use of GMR with the

be used43]. Thisagnosticismis an interesting feature of the incremental memorpased approach of local learning

system since it constitutes a single method to achieve act%proachesﬂgﬁﬂg&ygﬁqidea disltobcomgutelioﬁ Io(;:al feV?* .
learnirg with multiple learning algorithms, i.e. with multiple components models based on the datapoints in

kinds of learning biaseshat can be peculiar to eachmemory whose values in the input point dimensions are in the

application domain as opposed to a number of statisticaYiCi_nity of this input point. This local approach allows directly

active learning algorithms designed specifically for particuldind into account any novel single datapoint/learning

learning methods such asipport vector machines, Gaussia xemar adde_d to the database since regression 1S done
mixture regression, orocally weighted regression [#1 ocally and online. It can be done computationally efficiently

Nevertheless, what the robot will learn eventually wiIFhanks tq the use of few GMM compqne(tgqoically 2 or 3).
obviously depend both oR-IAC and on the capabilities of and crucially thanks to the use of an incremental approximate

the prediction machine/regression algorithm foioRtR-IAC ~ nearest neighbor aigithm derived from recent batehode

drives the collection of learnirexemplars approximate nearest neighpor_algoritr{rﬁ$,52,53. A.feature
reemp of ILO-GMR is that given its incremental and online nature,

th a single set of parameters it can in principle approximate
d adapt efficiently to a highariety of mapping to be learnt
that may differ significantly in their length scale.

In robot learning, a particular important problem is to learn th&'
forward and inverse kinematics as well as the forward a
inverse dynamics of theody [44,45,46,4Y. A number of
regression algoritins have been designed and experimented in
this contextin the robot learning lgrature and because a ILO-GMR has only two parameters: the num@r_ of
particularly interesting use &-IAC is for driving exploration components for local models, and a paraméiehat defines

for the discovery of the r dhdelignsof jpeayycinity{see (he pspudoge, outling | |, g ¢

the experiments in theext section (and was already illustrated?€/oW)- A related approach, based on Gaussian process
for IAC in [27,36), it is useful to look at statef-the-art regression rather than Gaussian mixture regression, has been
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described in [42] and in depth comparisons of thes@ 44484 learning exenplars. Further work will study
approaches will & of high interest in further work. systematically the computational complexity and scalability of

Outline of the pseudoode oflLO -GMR ILO-GMR.

§EE £EN(AHHA," ) Furthermore, darning forward motor models is mainly

r+< is the set o= L= Jf£)) points already observed and useful if they can be reused for robot control, hence for
stored in a hierarchichal-4neans tree structure inferring inverse mator models 4648]. This brings up
L is the input point difficult challenges since most robotic systems are highly

redundant, which means that the mapping from motor targets
1 Find the approximatél closest pointsk to <+ in 44 (e.g. in the task space to motor commands in the joint/articulatory
with incremental hierarchical-fneans) space is not a function: one target may correspond to many
1 Build a localfcomponents GMM model based on e motor articulatory commands. This is why learning directly
corrgspo;n_dlngJ_examplars, . _ _inverse models with standards regression algorithm is bound
1 Predicte &= [§=) Vfth cj_M,R using a least square estimate; to fail in redundant robots, since when asked to find an
1 Measure the true = [=); ticulatory configuration that yields a given target
9 Update incrementally"-=|=+ to include the novel exaplar aricy y conlig . y 9 9
1) conﬁguraﬂon, |t.vv'|ll typcally output the mean oéccurate
’ ' solutions which is itself not an accurate solutions. Fortunately,
there are various approaches to go around phblem

. [46,48, and one of them is specific to the GMM/GMR
We have compared the performancdld -GMR with other approach[50], called the single component leastuare

stateof-the-art regression methods on the hard regression tagkim . ; P
. . . ate (SLSE): because this approach encodes joint
defined in the SARCOS dataset whibas been used Sever"?“distributions rather than functions, redundancies are encoded

times in the literature as a benchmark for regressi A the GMM and inverse models can be computed by
techniques in robotics, e.g. [45,60,61]. This dataset encoijgrﬁjecting the joint distribution on the corresponding output

the'inversg dynamics of t_he arm of Fhe SARCOS “’F’Ot' Wifimensions and then ohg regression based only a the single
21 input dimensions (ppsmon_, velocity and ac_celeratlbr'i O Gaussian component that gives the highest posterior
DOFS.) and 7 outputldlm'ens;]ons'(porrespononomues). It probability at the give input point. This approach readly
contains44484 exemplars in the triing database andd49 o icaple in ILGGMR, which we have done for the second

test exenplars. It is available at: experiment described below
http://www.gaussianprocess.org/gpml/datalhe regression '

methods to which we compared performances on this dataset
are: Gaussian Mixture Regression (GMR, [3]), Gauss
Process Regression (GPR, I62Local GaussianProcess ) ) ) )
Regression (LGP, [@L supp rt vect or-SURe g rlRtBissecgan, wg describe the behawbthe IAC andR-
[63]) and Localy Weighted Projection RegressiohWPR, IAC algorithms in a simple sensorimotor environment that

[44]). All those algorithms were tuned with reasonable effollows us to show visually significant qualitative and
to obtain the best generalization results. For HG®IR, quantitative differences, as well as compare them with random

optimal tuning was done with = and . but results €xploration. In these experiments, the parametersA€ and
degrade very slowly when moving awafrom these R-IAC areqws= 250, andtheleaning progress window is
parameters Table 1 shows the comparison of the50. Also, probabilities aremm = 0.3, == = 0.7 in IAC and
performances of those algorithms for predicting the torques @& = 0.3, == = 0.6, == = 0.1.in R-IAC, The incremental
the first joint in the SARCOS database. We observe that tlearning algorithm that is used to learn the forward model is
performance of ILGGMR matches nearly the bestthe ILO-GMR system described in part Ill, with the same
performance (GPR), is shigt | y b e tS\VR, LGPt ahda parameters in bothAC and R-IAC experiments@ = 2 and
GMR, and clearly better than LWPR while being alsd = 100).

incremental but much easier to tune.

IV. EXPERIMENTWITH A SIMPLE SIMULATED ROBOT

A. Robotics configuration

GMR V- ILO- | LWPR | GPR | LGP LR
SV GMR We designed a simulated mechanical system, using the
0.014 | 0.011 | 0.0075 | 0.024 | 00065 | 0.011 | 0.081

Matlab roboticstoolbox[54]. It consists of a robotic arm using
Table 1.Normalized mean square ersoof regression methods using tt two degrees of freedom, represented by the two rotational
SARCOS dataset axes A, A as shown offrig. 6. The upper part of the arm has
Furthermore, in spite of the fact that our currenbeen conceiveds a bow, which creates a redundancy in the
implementation of ILGGMR was done in Matlab and is notsystem: for each position and orientation of the tip of the arm,
optimized, it is already able to k& a single prediction and there are two correspondimgpssiblearticulatory/joint angle
incorporate a new learning exaplar in around 10 configuratiors.

milliseconds on a standard laptop computer and wi#i34 Thi s syst eagdpmenteonsistsaf ra onepixel
SARCOS data examples are already in memory. Furthermocamera, returningraintensityvaluess set on its extremitas

we have measured experimentally the evolution of trainirghown on Fig. 6. The arm is put in a cubic painted
and preliction time per new exeplar: it increases environmenty, whose wallpapers are visibie the onepixel
approximately linearly with a small slope in the rangeameraaccording to articulatory configurations.
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Intensity valus measured by the camese consequences of  The arm ispositioned such that the cama iswatching the
both environmentr and rotational axes , o. So, we can  ceiling: the measured intensity values are random, and thus
describethe swtem input/output mapping with twanput there are no correlations between motor configurations and
dimensions, and one outpRl we= (A, A). sensorymeasures. Hence, once a few statistical properties of
Thus, in this system the mapping to Hearnt is state  the sensorymeasures have potentially been learnt (sash
independent since here trajectories are not considered (onlhe mean), nothing more can be learnt and thus no learning
end positions are measuredhd the perceptual result of progress can happen.
applying motor joint angle commands does not depend on §i@he arm is positioned such that &ite wall is in front of the
starting configuration. camera:the measured intensity value is always 0, so the
input/output correlation is trivial. Thus, after lias been
learnt that intensity values are constant in this area, nothing
can be further learnt.

B. Environment configuration

The front vall consists of arincreasing precision checker
(Fig. 7), conceived with a black and white pattern. The
designed ceiling contains animated wallpaper with white
noise, returning aandom value to the camera whrs one is
watching upward bound. Finally, other walls and ground are
just painted in whitéFig. 6).

q,

Intensity values
mesured by camera

/

-

| q,

Fig. 8. TweDimensions visualization of the sensorimotor space of the

191
i with two motor dimension6a , 4 ) and one sensory dimension.

Fig. 6.Representation of a 2 axes arm, with a one pixel camera moutr . . .
its extremity. This arm is put in the center of a cubic room, with diff Becausehe system has just twmotor dimensions and one

painted walls of different complexities. sensorydimension, itcanbe visualizedusing a2D projection
on a plane such as iRig. 8. This projection showa central
vertical zonecorresponding to the dynamic neisrojected on
the ceiling. Then, we can easily distinguish fhent wall,
represented omoth side of the noisy area, because of the
redundacy of the arm. The remaining whipars correspond
B LTI to other walls and the floor.

R R .
BRI A. Results: Exploration Areas

First, it is interesting to perform qualitative comparisons of
the exploration behavior generated by random exploration,
Fig. 7. Wallpaper disposed in the front wall. For many learning algori IAC exploration andR-IAC explorationmethods
the complexity increases from left to right.

For each exploration methodhe system isallowed to
The set up of the systeimsuch that we can sort three kinds ofxplore its sensorimotor space through 20000 sensorimotor
subregions in the sensorimotor space: experiments, i.e. it is allowed to collect 20000 learning
exemplars During each run of a given methodvery 2000
1 The arm ispositioned such that the cameraniatching the ~Sensorimotor experimesinade by the system esomputes a
front wall: for most learning algorithm, this subregion is2D smoothed histogram representing the distribution of

rather difficult to learn with an increasing level ofexplore_d sensorimotor conflguratlons n the_ |an‘ 500

compkxity from left to right 6ee fig. 7). This feature makes Sensorimotor experiments. This allows us to visualize the

it particularly interesting to study whethe&C or R-IAC evolution of the e_xplorati_on focusvertime, for each system.
are able to spot these properties and control the complexitgndom exploration obvisly leads to a flat histogram.

of explored sulsubregions accordingly.
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Fig. 9 presents typical results obtained WRRIAC (on the Here, the algorithm is indeed avoiding theisegp but we
left) andIAC (on the right) on a grey scale histogram wherecannotobserve precisely some interest todvdhe front wall,
darker intensities denote low exploration focus and lightemd the system searto find some things to learn in the back
intensities denote higher exploratifocus First, weobserve wall, as we can see, watching thaettomright part of the two
thatR-IAC is focusingon the front wall, containing the image last images.
of the checker, using its two possiliedundantexploration The histograms irFig. 9 were smoothed with gaussian
positions. It avoids the region which ¢aims the white noise, spatial frequency filter to allow us to visualize well the global
and alsahe regionsjust containing a whé color. In contrast, exploratory behavior. Nevertheless, it is also interesting to use
we cannot observe the same accuracy to concentratsmaller spatial frequency smoother in order to zoom in and
sensorimotor experiments/er interesting areas with th&C  visualize the details of the exploration behavior in the front
exploration method wall region. Fig. 10 shows a typical result obtained wik

IAC, just considering exemplars ii@med watching the front
wall in thebottomleft side of the 2D projection.

Evolution of Exploration Focus with R-IAC Evolution of Exploration Focus with TAC

Fig. 9. Evolution of the exploration focus when usiRgAC as an exploration heuristics (left) 6&C (right). Each square represents the smoc
distribution of explored motor configurations at different times in a given run and over a sliding time wiDddwer intensities denote low exploration fc
and lighter intensities denote higher exploration focus.dliserve thaR-IAC leads the system to explore preferentially motor configurations such t
camera is looking at the checkerboard, while avoiding zones that are trivial to learn or unlearnable zones. On thdAg®nisannable to organi:
explomt i on properly and fAinterestingd zones are much |l ess explored

Fig. 10.A zoom into the evolution of the distribution of explored sensorimotor experiments in one of the two subregions wherer¢his daoking at tt
checkerboard wheR-IAC is used. We observe that exploration is first focused on zones of the checkenabaale a low complexity (for the given learr
algorithm), and progressively shifts towards zones of increasing complexity.
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This sequence shows very explicitliyat the system first V. THE HAND-EYE-CLOUDSEXPERIMENT
focuses exploration on zones of lower complexity and
progressively shifts its exploratior] focus towards zones of\ye will now compare the performancesla andR-IAC
higher complexity. The system is thus able to evaluales octive learning algorithms to learn a forward model in a
accurately the different complexities of small parts of thg,re complex 6dimensionalrobotic sensorimotor space that
world, and to drive the exploration based on this evaluation. jnq|,des large unlearnable zones. Both algorithms will also be
A. Results: Active Learning compared with baseline random exploration.

We can now compare the performances of random
exploration,IAC exploration andR-IAC exploration in terms A. Robotics Configuration
of their efficiency for learning as fast as possible the forward
model of the system. For tieIAC method, we included here |, i experiment, a simulated robot has twb arms each
a version ofR-IAC without the multiresolution scheme 10 b two links and two revolutejoints whose angles are
assess the specific contribution of muésolutimn learning  ~,ntrolled by motoinputs A , A , A , A (seeFig. 12).

progress monitoring in the results. On the tip of one of the two arms is attached a square camera

. . capableof detectingthe sensoryposition (@, «) of pointblobs
For each exploration method, 30 experiments were run j.iive to the square. These peiobs can be either the tip

order to be able to measure means and standard deviationgfq e other arm oclouds in the sky (seig. 12). This means

the e\(olution of performance_s in generali_zation. I_n each giv‘?ﬁat when the right arm is positioned such that the camera is
experiment, every 5000 sensnotor experiment@hieved by o the clouds, which move randomly, the relation between

the robot, we froz¢he system and tested its performances iMotor configurations and perception is quasidom. If on the

generalization for predictinges from (.‘ ,A) on a test __contrary the arms are such that the camera is on top of the tip
database generated beforehand and independently consisfghe other arm, then there is an interesting sensorimotor

of random uniform queries in the sensoriorosutspace re|ationship to learn. Formally, the system has the relation:
where there are learnable input/output correlations (i.e.

excluding the zone with white noisdjesults are provided on
Fig. 11. As we can easily observand as already shown in
[27], using IAC leads to learning performances that are ; .
statistically significantly higher than withRANDOM where @, «) is computed as follows:

exploration. Yet, asFig. 11 shows, results oR-IAC are ; ; . ;
statistically significantly higher thatAC, and the difference @) gzgncggggfe(ﬁ E)I;;u;ed( oilgr t?(e)) yvh|te wall: nothing has
betweenlAC and R-IAC is larger than betweetAC and ’ ! '
random exploration. Finally, we observe that including th
multi-resolution scheme intoR-IAC provides a clear
improvement oveR-IAC without multiresolution, especially
in the first half of the exploration trajectory where
inappropriateor too earlyregion splits can slow down the
efficiency of exploration if only leaf regions are taken into
account for region selection.

(o,¢)= HA ,A , A ,4)

82) The camera is on top of the left hand: the valea of
the relative position of the hand in the cameeéerence
frame fis taken. According to the camera size, xhandy
values are in the intervfDd; 6];
(3) The camera is looking at the window: Two random
values e, « playing the role of random clouds displacement
are chosen for output. The interval of outputs correspands t

camera size.
(4) The camera is looking at the window and sees both hand
57 - Random and cloud: the output valugs, «) is random like if just a
® 60 @ IAC 1 cloud had been detected.
= NS, —©— R-IAC Local ]
= N —H RIAC Multiresolution This setup can be thought to be similar to the problems
g5 encountered by infants discovering theirdg: they do not
z know initially that among the blobs moving in their field of
T view, some of them are part
°=' s0F controlled, such as the hand, and some other are independent
g of the self and cannot be controlled (e.g. cars passing in the
= street or clouds in the sky).
>j(]52 . . .
! ! ! ! ! Thus, i n t his sensori motor
0 5 10 15 20 25 potentially learnable subspace is next to a large unlearnable
# Sensorimotor Experiments subspace, and also next to a large very simple subspace (when
the camera is looking neither to the clouds tocthe tip of the
Fig. 11.Mean and standadbviation ofprediction errorsvith IAC, R- other arm).

IAC with only local resolution, anB-IAC with multi-resolution,compared
with the random exploration approach.
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Fig. 12 Experimental setup. The 2D robot has two arms, each with tw«
and two revolute joints. At the tip of the right arm is rigidly attached a s
camera/eye which can sense either the position of thaf tipe other arm i
its own reference framé<,L) if it is above it, but which can also sense
position of randomly moving clouds when the right arm motor configui
is such that the camera is looking over the top grey area (tiedew »).
When he camera senses something, the robot does not know initially w
this corresponds to the tip of its left arm or to a cloud. In subre
corresponding to the first alternative, the motor/sensor mapping is cor
and a lot can be learnt. In subi@ts corresponding to the second alterne
there are no correlations between motors and sensors and nothing
learnt except some basic statistical properties of the random mover
clouds. There is a third alternative, which actually happens ofidse time i
the joint space is sampled randomly: the camera looks below the wind
does not see its left arm tip. In this very large subregion, the motor to
mapping is trivial.

B. Results

In these experiments, the parameterdA®® and R-IAC are
1| i € 250, the learning progress window is 5®Iso,
probabilities arces = 0.3, == = 0.7 in IAC and == = 0.3,

== = 0.6, == = 0.1.in R-IAC. Experiments span a duration

of 100000 sensorimotor experiments. Tlwcremental

learning algorithm that is used to learn the forward model
with the same

the ILO-GMR system described in part lll,
parameters in botPAC and R-IAC experiments@= 2 and
4 = 100).

A first study of what happens consistd monitoring the

distance between the center of the eye (camera), and the h
(tip of the other arm). A small distance means that the ey
looking the hand, and a high, that it is focusing on clou

(noisy pat) or on the white wall. Fig. 3shows histotgams of
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Distance Hand-Eye

Fig. 13. Mean distributions (and standard deviations) over 30 simulati
distances between the hand and the center of the eye when explor
random, guided byAC, or guided byR-IAC. We observe that whiltAC
pushes the system to explore slightly more than random exploration th
of the sensorimotor space where the tip of the left arm is perceived
camera or near the cameRaJAC is significantly more efficient thatAC for

Then, we evaluated the quality of the learnt forward model
using the three exploration algorithms. We considered this
quality in two respectsl) the capability of the model to
predict the position of the hand in the camera given motor
configurations for which the hand is within the field of view of
the robot; 2) the capacity to use the forward model to control
the arm: given a right arm confitation and a visual
objective, we tested how far the forward model could be used
to drive the left arm to reach this visual objective with the left
hand.The first kind of evaluation was realized by first building
independatly a test database of 1000 ramd motor
configurations for which the hand is within the field of view,
d then wusing it for testing the learnt models built by each
algorithm at various stages of their lifetime (the test consisted
in predicting the position of the hand in the cangiven joint
configurations). Thirtysimulations were run, and the evolution
of mean prediction errors is shown on the righFigf. 14. The
se((:jond evaluation consisted in generating a set of
)., A A |0> 0C¢EQe« > 0 values that are possible
en the morphology of the robot, and then use the learnt

%rward models to try to move the left arm, i.e. find

. ' . A , A ) to reach the(e,«) _objectives corresponding to
these distances. We first observe the behavior of the Randgm.. ) &e, ) - Obj rresp g
) . . particular A , A values Control was redted through
exploration algorithm. The curve shows that the system is, in. - . . :
o o . . . inferring aninverse modelusing ILO-GMR as presented in
majority, describing actions with a distance &2,
corresponding to the camera looking at clouds or at the wh

?a)rt lll. The distance between the reached point and the
wall. Interestingly, the curve of theAC algorithm is similar jective point was each time measured, and results, averaged
but slightly displaced towards shorter distance: this shows t

O\éer 30 simulations, are reported in the left graphigf 14.

th curves orfrig. 14 canfirm clearly the qualitative results

A D S e e e e e o 15 Pel oviolia GureblIAC QuBbbrErma s rbabayre e

difference with botHA C and endom exploration: the systemWhlch is only slighlty better than random exploration. We
spends three times more time in a distaless than8, i.e.

have thus shown th&-IAC is much more efficient in such an
; : : . . ; example of complex inhomogeneous sensorimotor spéee.

exploring sensorimotor configurations in which the camera Eﬁso ip P g na

|l ooking at the other ar m®s

. . : fixed '!’{quosgzt?.%n)ﬂgéis Cfpfwlgr?goé]ss'ti(gﬁ);ﬂ%egbgi?@fﬁl’ﬂgg”2?0 etw

IAC andIAC is more important thathe difference between o ' '
' the left hand.
IAC and mndom exploration.

(0]
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VI. CONCLUSION

IAC was initially introduced as a developmental mechanisi
allowing a robot to selbrganize developmental trajectories ol
increasing complexity without prerogramming the particular

developmental stagg27]. In this paper, we have argued tha
IAC and other intrinsically motivated learning heuristics couli
be viewed as active learning algorithms, and were based
heuristics that are more suited than traditional active learnil
algorithms for operation in unprepared sensorimotor spac
with large unlearnable subspaces. Then, we have introducec
novel formulation oflAC, calledR-IAC, and shown that its

performances as an intrinsically motivated active learnin
algorithm were far superior t&\C in a complex sensorimotor

space where only a small sface was interesting. We have
also shown results in which the learnt forward model we
reused in a control scheme.

Further work will study extensions of the current results i
several directions. First, experiments presented in this paj
were achievedn simulated robots. In spite of the fact thai
IAC was already evaluated in higlimensional real robotic Fig. 14 Left: evolution of the generalization capabilities of the learnt foi

; ; model with Random explorationAC, and R-IAC, averaged over :
systems 27,36,34, these experiments were focusing on thlsimulautions. Right evolution of performances in control based i

selforganization of patterns in developmental trajectori€fonyard model learnt through Random exploratikG exploration, ancR-
Evaluating IAC and RAC as ative learning methods in IAC exploration, averaged over 30 simulations.

high-dimensional real sensorimotor robotic spaces remains

be achievedSecond, botHAC and R-IAC heuristics could

also be conceptualized as mechanisms for generating inter

immediate rewards that could serve as a reward rayBtea

reinforcement learning framework, such as for example

intrinsically mdivated reinforcement learning28,33,33.

Leveraging the capabilities of advanced reinforcemel

learning techniques for sequential action selection to optimi:

cumulated rewats might allow IAC and R-IAC to be

successfully applied in robotic sensorimotor spaces whe

dynamical informationis crucial, such as for example for

learning the forward and inverse models of a force cdatiol

high-dimensional robot, for which guided exploration ha:

been identified as a key research target for the fulit@§.

Also, as argued in5f] it is possibl-e

basedod intrinsic motivation

interestingness characterizes goals in the task space rather !

motor configurations in the motor/joint space such as i

knowledgebased intrinsic motivain systems likdAC or R-

IAC. We believe that a competence based versioR-tAC

would allowincreasingsignificantly exploration efficiency in o _
massivey redundan sensorimolor spasaly, an issue of 18, 19, Seriee o PEIOmanee A D vy e 1 o
,Cer!tra_l |mp0rta_nce to be St,Udled In the_ futuse hOW the left han% extremity in theJ refe?ence frame of ?re).evhe’ robot r?as
intrinsically motivated exploration and learning mechanisneach the targets (position fixed in the eye) with the left arm.We obser
can be fruitfully coupledwith social learning mechanisms, the robot which has explored its sensorimotor space with(R reaches &
which would be relevant not oy for motor_learningLcs $o00 Ny 1) ey (ot o) L R 0o et i
[56’57’5&_ but al_so for_ develo_pmental language Iearnlnlexploration are gither slightlgi/ imprecise for goals 2 and 3 and very img
grounded irsensorimotor interaction§9]. for goal 1.

asur e



