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Preface
New Languages for Explaining Life

As the twentieth century was just beginning, only a few years after the discoveries of Darwin,
another scientific giant revolutionized the life sciences. D’Arcy Thompson, a Scottish biolo-
gist, mathematician and classics scholars, proposed the use of a new language for explaining
the origins of life forms, and that language was mathematics. Mathematics had always been
used for measuring, counting and describing organisms and their structures. But causal ex-
planations, including the theory of natural selection at the time, were formulated verbally,
using natural language. Aware that the great variety of mechanisms underlying life forms
were often complex biophysical processes that could not be adequately described using the
existing terminology of natural selection alone, Thompson showed how it was also essential
to use mathematics to express and explain processes of morphogenesis. Any explanation of
why shellfish, jellyfish, the wings of dragonflies, radiolaria, rams’ horns, or the skeletons of
dinosaurs are the way they are had also to be couched in equations expressing processes of
growth that are constrained by the laws of physics. It was not enough simply to point to
reproductive advantages when seeking to explain how these forms came about.

Later, around the 1950s, a second language was added to the natural scientist’s ex-
planatory toolbox, namely the language of algorithms. Some mathematical models of the
formation of structures, both in physics and biology, were too complex for their behaviours
to be predicted by mathematical reasoning alone. The appearance of computers, along with
theoretical advances in the algorithms that enabled computers to function, opened up a new
possibility: describing processes of morphogenesis as algorithmic processes of interaction be-
tween the constituent parts of a system and simulating them digitally. This approach proved
to be particularly useful in the study of morphogenetic phenomena in systems comprising
large numbers of components interacting in a nonlinear fashion. In such systems, order will
often appear spontaneously. Macro-structures emerge out of micro-structures that contain
no macro-level plan: this is self-organization. Alongside the physicists Lorenz and Fermi
who used the computer to model climatic phenomena and interactions between magnetized
particles, two of the great architects of computing followed in Thompson’s footsteps. The
first of these was Alan Turing, who used algorithms to study how chemical reactions can
spontaneously create patterns such as spots, stripes or spirals on the skins of leopards and
fish, and to model the way in which the spherical symmetry of an egg cell can be broken
during gastrulation, thus allowing the embryo progressively to take shape. Turing’s work,
like Thompson’s, came to have a major influence on the development of embryology and of
biology (even where this influence was not direct). As for the second influential figure, John
Von Neumann, he first showed how algorithmic structures could reproduce themselves, and

vii
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in so doing gave rise to profound new questions about the nature of life.

The brain, the cognitive representations and the behaviours that it generates are proba-
bly the most complex structures known to us. It is therefore unsurprising that today large
communities of researchers use mathematics, algorithms and computers to model them. One
of the most remarkable human faculties is language. Where does it come from? How was
it created? How do new languages come about? A number of scientists, including Michael
Studdert-Kennedy, Bjorn Lindblém, James Hurford and Luc Steels, have put forward the
idea that new languages can organize themselves in the course of local interactions between
individuals, in the same sort of way that patterns on the skins of leopards are formed out
of molecular interactions.

Luc Steels, in particular, as a pioneer and visionary, has shown how algorithmic models,
together with their robotic extensions that take full account of the role of the body, constitute
an essential scientific language in the understanding of the origins of natural language. It is
from him that I learned this fascinating new perspective that forms the basis for the work
presented in this book. I had the privilege of being part of his team at the Sony Computer
Science Laboratory in Paris, where a large part of the scientific foundations of this work
were laid down. To him I owe a huge debt of thanks.

This book focuses on some specific questions concerning the pillar of language that is
speech: how did the structures of speech, vowels and the combinatorial re-use of phonemes
in syllables come about? How can a community of individuals “invent” a new repertoire
of vocalizations? What part could self-organization have played in the morphogenesis and
evolution of speech? How does speech develops in infants, and how does the infant discovers
that speech sounds can be used to influence others, i.e. for language? How does speech
development relates to the evolution of speech? Using the methods that I have just outlined,
the book examines these questions through the prism of embodied computational models.
Readers hoping to find definitive answers will nevertheless be disappointed, for these are
big questions, and much work remains to be done. They will, however, see how this new
language of algorithmic and robotic models makes it possible to formulate questions in a new
way, to look at them in a new light and to begin to perceive the contours of new hypotheses
about the origins of speech and language.

Some of the work described here was begun in 1999 at the Sony Computer Science
Laboratory and published as the first edition of this book in 2006'. The models described
in the 2006 edition were principally those that I describe in chapters 6, 7 and 8 of this new
edition. They are concerned with the mechanisms that enable a population of individuals
to form and share culturally novel combinatorial speech sound systems. They also address
the question of how one can explain both statistical regularities and diversity over the
world’s inventories of speech systems. Individuals in these populations are equipped with
neural network models of multimodal perception, decision and unsupervised learning, as
well as models of the vocal tract and the auditory system. They interact through hearing
each other’s random but systematic vocal babbling sounds, progressively attuning their
initially unorganized vocalizations towards organized systems that share many fundamental
properties with the speech sounds of today’s world languages.

This work was subsequently extended substantially in several directions, which dictated
the rewriting of several parts and the addition of much new material in the current edition.
On one hand, discussions of how these models enable us to study old and new evolutionary
hypotheses about the origins of speech has been enriched across the book, especially in

1Oudeyer, P-Y. (2006) Self-Organization in the Evolution of Speech, Oxford University Press
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chapters 9, 10 and 11. On the other hand, some of the insights resulting from the models
presented in chapters 6, 7 and 8 gave rise to a whole new series of research projects that I
have been pursuing with several colleagues, and which are now reported in chapter 10 and
11. As these models showed the key importance of spontaneous vocal babbling in the self-
organization of shared systems of speech sounds, this led us to study the evolutionary and
developmental origins of spontaneous exploration. Here, vocal learning is conceptualized
within the more general epigenetic framework of the sensorimotor and social development
of the child. One key question was to understand better whether systematic vocal explo-
ration, as displayed by most children, was the result of a language-specific motivational
mechanism, or whether it could be the outcome of a more general motivational mechanism
for exploration.

In this perspective, Frédéric Kaplan and I designed and studied algorithmic models of
intrinsically motivated learning, a form of autonomous learning that that leads organisms to
explore their own body and its relations with its environment “out of curiosity”. This enabled
us to demonstrate, as described in Chapter 10, how babbling and vocal imitation could be
a collateral effect of more general developmental mechanisms, and opened up some novel
hypotheses about the evolution of speech and language. With Clément Moulin-Frier and
Mai Nguyen, I examined more closely how certain structures of vocal development observed
in infants might emerge from these mechanisms of curiosity-driven exploration through a
process of self-organization. Then, with Sébastien Forestier, we showed that children’s
discovery of language as a tool to influence the behaviour of others could self-organize
automatically out of intrinsically motivated goal exploration. In intrinsically motivated
goal exploration, organisms explore actively by generating and sampling their own goals with
the intrinsic objective of discovering causal structures of their environment. These models,
who were initially developped in this context of modeling child and language development,
later on developped and provided foundations for new approaches to autonomous artificial
intelligence and machine learning (Baranes and Oudeyer, 2013; Oudeyer, 2018; Laversanne-
Finot et al., 2018), as well as new new theories to understanding curiosity in neuroscience
(Kaplan and Oudeyer, 2007; Gottlieb et al., 2013; Gottlieb and Oudeyer, 2018).

These computational models of the role of self-organization and spontaneous exploration
in the evolution of speech can be seen as complementary to the work of a number of other
research teams who have followed, or are following, similar paths, and who have contributed
to creating the vision that this book sets out to present. I am thinking in particular of
Ahmed-Reda Berrah, Pierre Bessiére, Louis-Jean Boé, Julien Diard, Hervé Glotin, Rafael
Laboissiére, Clément Moulin-Frier and Jean-Luc Schwartz in Grenoble; Chistophe Coupé,
Jean-Marie Hombert, Egidio Marsico and Francois Pellegrino in Lyon; Bart de Boer in Brus-
sels; Catherine Browman, Louis Goldstein and Michael Studdert-Kennery at Yale; James
Hurford in Edinburgh.

The preparation of this book and the recent work that I present owe much to my col-
leagues at Inria. In particular, the Flowers team around me has provided invaluable support,
of both a scientific and a practical nature, and for this I thank them all.

Publishing a science book addressing questions that are fundamental and at the frontiers
of science, for a readership from a variety of backgrounds and with a variety of interests, can
be a challenging task. I had the good luck to encounter people who, each in their own way,
made it possible. They all took the time to immerse themselves in the project and their
enthusiasm helped me greatly. James Hurford and Michael Studdert-Kennedy provided
to me the encouragements and oppportunity to write and publish this book at Oxford
Universty Press for the first edition. James Hurford also worked on the english translation
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of the first edition, while David Lewis worked on the translation of the second edition. The
new edition has also benefitted from the support of Mikhail Gromov and Michel Cassé,
whose work bringing the mathematical sciences closer to biological and human sciences
echoes the universalism of D’Arcy Thompson.

Finally I want to thank my wife Cécile and my children Adéle, Théophile and Arthur, for
the energy and the light they give me each day and which have been my guide throughout.
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around 1. The three developmental stages of figure 10.10 are reported at the
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Chapter 1

The Self-Organization Revolution
in Science

1.1 Self-organization: a new light on nature

Nature, especially inorganic nature, is full of fascinatingly organized forms and patterns.
Mountains have the same silhouette when viewed at the scale of a rock, a summit, or a
whole mountain range. Sand dunes often arrange themselves in long parallel stripes. Water
crystallizes into symmetrical serrated flakes when the temperature is right. And when
water flows in rivers and hurtles over cataracts, trumpet-shaped vortices appear and the
bubbles collect together in structures which are sometimes polyhedral. Lightning flashes
draw plant-like branches in the sky. Alternating freezing and thawing of the rocky ground
of the tundra leaves polygonal impressions in the earth. The list of these forms rivals many
human artefacts in complexity, as can be seen in Figure 1.1. And yet they are not designed
or conceived by anyone or anything, not even natural selection, Dawkins’ (Dawkins, 1982)
‘blind watchmaker’. What, then, are the mysterious factors that explain their existence?
All these organized structures have something in common: they are the macroscopic
outcomes of local interactions between the many components of the system from which they
emerge. Their global organizational properties are not, however, to be found at the local
level. Indeed the properties of the shape of a water molecule, as well as of its individual
physico-chemical properties, are qualitatively different from the properties of ice crystals (see
Figure 1.2), whirlpools, or polyhedral bubbles. The polygonal impressions in the tundra do
not correspond with the shape of the stones composing them, and have a spatial organization
quite different from the temporal organization of freezing and thawing. This is the hallmark
of a phenomenon that is essential to the origins of forms in nature — self-organization.
This fundamental concept is the touchstone of the paradigm shift undergone by the
sciences of complexity in the 20th century. Following the pioneering and visionary work
of D’Arcy Thompson (Thompon, 1917), whose work in the early years of the 20th century
centered on self-organized phenomena but did not then qualify them as such, the concept
was recognized and gained momentum in the 1950s, driven by such figures as Alan Turing,
William Ross Ashby, Heinz von Foerster, Ilya Prigogine, Francesco Varela et René Thom
(Turing, 1952; Ashby, 1952; Nicolis et Prigogine, 1977; Kauffman, 1996; Ball, 2001). Ever
since Newton, good science was supposed to be reductionist, and consisted in decomposing
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Figure 1.1: Nature is full of organized forms and patterns without there being anywhere any
plans which might have served to build them; they are said to be self-organized. Here, parallel
stripes running through sand dunes, water bubbles on the surface of liquid which has been stirred
up and the polyhedral structures which are left when they dry out, an ice crystal, mountains whose
shapes are the same whether one views them on the scale of a rock or a whole peak (Photos:
Nick Lancaster, Desert Research Institute, Nevada; Burkhard Prause, University of Notre Dame,
Indiana; Bill Krantz, University of Colorado).

Self-organization

Microscopic level: Macroscopic level:
water molecules ice crystal

Figure 1.2: Self-organization of ice crystals. The macroscopic structure of the crystal self-organizes
out of interactions between water molecules, whose microscopic structure is qualitatively different.

natural systems into simpler subsystems. For example, to understand the functioning of
the human body, it was appropriate to study the respective parts, such as the heart, the
nervous system, or the limbic system. Moreover, it did not stop there, and study of the
nervous system, for example, was subdivided into study of the cortex, of the thalamus,
or of the peripheral motor innervations, and each of these sub-parts was studied by hyper-
specialists in separated dedicated university department. This method has obviously enabled
us to accumulate an impressive bank of knowledge. But the prophets of complexity have
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broken up this paradigm. Their credo is “the sum of the parts is greater than the parts
taken independently”. This is because nature is composed of complex systems with many
interacting subsystems, and complex systems have a very strong tendency to self-organize.
This includes even systems in biology, in which the ascendancy of natural selection is not
total, but must work alongside self-organization (Kauffman, 1996; Ball, 2001).

This is why it now seems that many natural systems cannot be simply explained by a
reductionist study of their parts. One of the most emblematic examples is that of the col-
lectively built artefacts of insect societies (Camazine et al., 2003). Termites make immense
nests, rising several metres above the ground, and with an architecture which is reminiscent
of human structures, as Figure 1.3 shows. To try to explain how these structures are built,
the study of individual termites, for example the precise study of all their neural wiring, is
absolutely not sufficient. One could know everything about the anatomy and the brain of
a termite, without ever understanding how their nests are built; because indeed no termite
has the equivalent of a plan, even partial, of the superstructure. The know-how that they
possess is infinitely more basic; it is of the type “if I come across a lump of earth, pick it
up and place it where the pheromone signal is strongest”. The superstructure is rather the
result of the dynamic interactions in the environment of thousands of termites, in the same
way as the symmetrical structure of ice crystals is the result of the interactions of water
molecules under certain conditions of pressure and temperature, and not a projection to the
macroscopic level of structures already present at the microscopic level.

Concrete examples like this, of the use of the concept of self-organization, and of expla-
nations of natural forms in terms of systemic properties, are now abundant, and are at the
heart of the most advanced research of more and more physicists and biologists. Further
examples include hunting or foraging patterns of bees and ants, the dynamic shapes of shoals
of fish or flocks of birds, symmetrical patterns on butterfly wings, the regular spots on a
leopard’s skin, the stripes of fish and shellfish, the magnetization of magnets, the formation
of whirlpools in rivers, the birth of galaxies, demographic oscillations in predator-prey ecol-
ogy, the formation of patterns in bacterial cultures and chemical reaction-diffusion systems,
crystallization, lasers, superconductivity, the distribution of the sizes of avalanches, auto-
catalytic chemical systems, the formation of lipid membranes or the dynamics of traffic jams
on freeways.

The sciences of complexity have thus demonstrated the fundamental usefulness of the
concept of self-organization for the explanation of natural phenomena involving physical
structures and certain biological structures characterizing the morphology or behaviour of
simple animals like insects. We are now at the dawn of a new decisive phase in this scientific
revolution: researchers in complexity theory are beginning to tackle the understanding of
mankind itself, using these new tools. The understanding of the vital functions of the human
body was the first to be transformed by the emerging wave of what is called “integrative”
or “systemic” biology (Chauvet 1995; Kitano, 2002; Noble, 2006; Wilkinson, 2011; Klipp et
al., 2016). Rather than concentrating on each organ in isolation, there is now an attempt
to understand their complex interactions in an organism considered as a whole, in which
each element is integrated with the others, at different scales in time and space. This has
opened up new theoretical vistas, which began with Alan Turing’s mathematical models of
morphogenesis (Turing, 1952), and more recently for the understanding of cancers (Kitano,
2004) and the functioning of the heart, as demonstrated by Denis Noble, one of the pioneers
of the biology of systems (Noble, 2006), as well as other organs (Werner et al., 2017).

The advocates of self-organization do not stop there: the human brain, and thus the
phenomena of sensation and thought, are also under the strong influence of features of
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Figure 1.3: The architecture of termite nests is the self-organized results of the local interactions
among thousands of individuals, none having any notion of an overall plan.

spontaneous organization in their structure. Indeed, the brain, composed of billions of neu-
rons dynamically interacting among themselves and with the outside world, is the prototype
of a complex system. For example, as we will show in this book, self-organization could be at
the heart of the capacity of our brains to categorize the perceived world, that is, to organize
the continuous flux of perceptions into atomic psychological objects.

But the main subject of this book goes beyond speculation about the brain as a self-
organized system: we are today on the brink of a major advance in science, that of a
naturalized understanding of what makes humans unique: their culture and their language.
While culture and language have been the subjects of investigation by social sciences for
centuries, our understanding of them has so far never been anchored in their material, bio-
logical substrate, i.e. in the set of all human brains in ongoing complex dynamic interactions
in the physical world. The tools of complexity are now starting to make that possible. This
book provides an illustration through one specific example: the origin and shaping of speech,
one of the pillars of human language. Speech is the outward form and vehicle of language,
consisting of combinatorial systems of sounds shared within language communities. In order
to better understand the revolution that this question is now undergoing, we will first take
a broad look at its historical development.
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1.2 Language origins: a flourishing research field

It is an obvious fact, but nonetheless mysterious for that: humans speak. It is their main
activity, an activity that sets them apart from the rest of the animal kingdom. Human
language is a communication medium of unequalled complexity. It is a conventionalized
code which lets individuals share their ideas and emotions with others, lets them talk not
only about the colours in the sky above their heads, but also of distant landscapes, of past
events, of how they imagine the future, of mathematical theorems, of invisible properties
of matter, and of language itself. Besides that, each language defines a system which is
peculiar to its speakers, an original way of organizing sounds, syllables, words, and sentences,
and of spelling out the relationship between these sentences and the concepts which they
convey. Around six thousand languages are spoken in the world today, and there is great
diversity among them (Hageége, 2006; Hombert, 2009; Fitch, 2011). These languages are in
a permanent state of change (Labov, 1994; Hombert, 2005), with some dying and others
being born. The number of languages which have existed is estimated at over half a million.
It is hard to imagine humanity without language. And yet, a long time in the past, humans
did not speak.

This raises one of the most difficult questions in science: how did humans come to talk?
A further question follows naturally: how do languages evolve?

These two questions, of the origin of the language faculty and of the evolution of lan-
guages, have been focussed on by many thinkers in centuries gone by, especially in the
nineteenth century. They are prominent in Darwin’s speculations (Darwin, 1859). Many
such theories were developed without benefit of any empirical or experimental constraint.
They were equally devoid of reasoned arguments and scientific method, to the point where
the Linguistic Society of Paris ruled in 1866 that such questions should no longer be raised
in the context of scientific discussion. This ruling initiated a century of almost total lack of
progress in research in this domain.

Advances in neuroscience, cognitive science and genetics towards the end of the twentieth
century have put these questions back into the centre of the scientific arena. On the one
hand, modern neuroscience, thanks especially to new techniques of cerebral imaging, and
cognitive science have made enormous progress in understanding the general functioning
of the brain, and especially in the way in which language is acquired and processed in the
brain. These developments have started to bring the study of language into the arena of the
natural sciences, grounding the abstract systems which linguists describe in the biological
and physical matter of which humans and their environment are composed. In short, natural
sciences have taken over questions which were previously in the domain of the human and
social sciences. This new light on the workings of language and the brain have provided re-
searchers with the constraints whose absence undermined the speculations about the origins
of language of the nineteenth century.

Progress in genetics has moreover turned the spotlight on neo-Darwinian theories of
evolution, both confirming some of its foundations (with the discovery of genes, for example,
along with some of their mechanisms of variation), and allowing its predictions to be tested,
often successfully, thanks to the sequencing of the genomes of different species of animals
so that we can reconstruct their phylogenetic trees and trace their evolutionary history. In
particular, the sequencing of the human genome, along with that of other animals such as
chimpanzees and monkeys makes it possible to specify the relationships between humans
and their ancestors. Thus, driven by vigorous evolutionary biology, which simultaneously
provides an impressive body of observations and a solid explanatory framework, the question
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of human origins has become a central theme in science. And quite naturally, the origins
of language, this being one of the distinctive features of modern humans, has become, as in
the nineteenth century, a beacon-like subject of research.

1.2.1 Interdisciplinarity

There is an emerging consensus among researchers who are today getting down to questions
of the origin of the human language faculty and the evolution of languages — this research
must be interdisciplinary. It in fact poses a puzzle with immense ramifications which go
beyond the competence of each individual discipline on its own. Firstly, it is because out of
the two big questions regarding the origin and the evolution of language there arise a number
of subsidiary questions that are highly complex in themselves: What, in fact, is the language
faculty? What is a language? How are sounds, words, sentences and representations of
meaning related to each other? How does the brain represent and learn these sounds and
sentences and the concepts which they convey? What are the respective roles of nature and
nurture? What is language for? How does a language form and then change in the course
of successive generations of speakers? What do we know of the history of each particular
language? Why are the language faculty and languages the way they are? Why do we see
universal tendencies and at the same time great diversity in languages? How does language
influence the way we perceive and understand the world? Is language, like the appearance of
eyes, the result of a phylogenetic evolution, or is it rather, like writing, a cultural invention?
Is language an adaptation to a changing environment? An internal change improving an
individual’s chances of reproduction? Is it an exaptation, a side effect of changes which
were not at first tied to communicative behaviour? What are the evolutionary prerequisites
which paved the way for the capacity of speech?

Ranged against the diversity of these questions is an even greater diversity of research
disciplines and methods. Linguists, even though they may continue to provide crucial data
on the history of languages, are no longer the main actors. Developmental and cogni-
tive psychology and neuropsychology carry out behavioural studies of language acquisition
and language pathology, and these often reveal cognitive mechanisms involved in language
processing. Neuroscience, especially with equipment for brain imaging allowing us to see
which brain regions are active for given tasks, attempts to find neural correlates of ver-
bal behaviour, to discover its organization in the brain. Some researchers also study the
physiology of the vocal tract, to try to understand how we produce speech sounds. The
physiology of the ear, the essential receptor in the speech-decoding chain (or vision, in the
case of signed languages), is also a focus of research. Archeologists examine fossils and arte-
facts left by the first hominids, and try on the one hand to deduce our anatomical evolution
(especially of the larynx) and on the other hand to get an idea of what activities they were
engaged in (what tools did they make? and how did they use them? and what can these
tools tell us about the degree of cognitive development?). Anthropologists do fieldwork on
isolated peoples, and report on cultural differences, especially those related to languages and
the meanings they convey. Primatologists try to evaluate the communicative capacities of
other primates and to compare them with our own. Geneticists on the one hand sequence
the human genome and that of potential ancestral species when it is possible to specify
their phylogenetic relatedness, and on the other hand use genetic information from different
people across the planet to help in reconstructing the history of languages, which is often
correlated with the genetic history of their speakers.

Language thus involves a multitude of components interacting in complex ways in parallel
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on several scales of time and space. There is the ontogenetic timescale of the growth of an
individual person, the glossogenetic or cultural timescale of the evolution of cultures, and
the phylogenetic timescale of the evolution of species. Now, as we saw in the first part of
this chapter, even though each of these components still needs to be studied independently
in order to reduce the complexity of the problem, it is also fundamental to study their
interactions. Many of the properties of language are probably not directly encoded by any
of the components involved, but are the self-organized outcomes of the interactions of the
components. These self-organizational phenomena are often complicated to understand or
to foresee intuitively, and complicated to formulate in words.

1.2.2 Computer, mathematical and robotic modelling

This is why research into the origins of language today brings together computer scientists,
mathematicians and specialists in robotics who build operational models of these interactions
between the components involved in language, conceptualized as a complex system (Steels,
1997; Coupé et al., 2010; Christiansen and Chater, 2016). An operational model is one which
defines the set of its assumptions explicitly and then computes or simulates the consequences
of these assumptions, proving that a particular set of conclusions is entailed. There are two
main types of operational model, that differ in the formal language used and in the uses to
which they are put.

The first type involves abstracting a certain number of variables from the phenomenon
of natural language formation and expressing how these variables are related and how they
change over time in the form of mathematical equations. Usually this comprises systems of
coupled differential equations and makes use of the framework of dynamic systems theory,
and sometimes statistical physics, as for example in the work of Nowak et al. and Loreto
et al. who studied the mechanisms by which lexical conventions are formed (Nowak et
al., 2002; Loreto et al., 2012). When these models are sufficiently simple, their behaviour
can be predicted analytically and formally proved from their mathematical structure alone.
However, the abstractions and assumptions on which such proofs are based are sometimes
far removed from physical, cognitive and social realities. Moreover, the formal language of
mathematical relations is not always very suitable for explaining processes at work in nature
(or in culture).

A second type of model has thus come into existence, where processes of morphogen-
esis are formulated in terms of algorithms. These algorithms are themselves expressed, in
practice, using computer programming languages. Using this kind of formal language to de-
scribe a natural or a cultural process has two solid advantages. First, the great expressivity
of these languages lets them formulate highly complex processes concisely (Dowek, 2011).
Secondly, in the case of phenomena whose behaviour is very difficult to predict analyti-
cally from a series of equations, it can be possible to calculate this behaviour automatically
through simulation. The programs can be run on computers in what is a simulation of a
morphogenetic process, and researches can observe how the simulated system behaves with
different parameters.

In research into the origin and evolution of language, this approach often involves building
artificial systems in which individuals (their bodies, brains and behaviour), their interactions
and their environment are modelled by programs. It is an approach that we will look at
in detail in the following chapters, and which has already yielded decisive results that have
opened the way to solving some fundamental unanswered questions. The pioneering work of
Steels using this kind of algorithmic model (Steels, 1997; Steels, 2003; Steels, 2012; Steels,
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2016) showed how linguistic conventions linking words to meanings can form spontaneously
through pairwise interactions between individuals. Together with a number of colleagues
he then extended these models so as to allow the formation of systems of shared semantic
categories, that is to say methods by which individuals within the same community come to
classify sense data in the same way (Steels, 2003; Kaplan, 2001). This work sheds light on the
similarities and dissimilarities to be found among the world’s languages in the way colours,
for example, are named and categorized (Steels and Belpaeme, 2005). More recently these
models have been applied to the formation of grammatical structures (Spranger et Steels,
2012; Steels, 2016), complementing other pioneering work from Hurford, Kirby, Smith and
their colleagues on the evolution of syntax (Kirby and Hurford, 2002; Kirby et al, 2014),
but also that of Coupé and Hombert (Coupé and Hombert, 2005). At the same time, other
models have been developed for investigating the formation of speech structures, including
those of Berrah et al. (Berrah et al., 1996; Berrah and Laboissiére, 1999), Browman and
Goldstein (Browman and Goldstein, 2000), de Boer (de Boer, 2001), Oudeyer (Oudeyer,
2005a,c) and Moulin-Frier et al. (Moulin-Frier et al., 2008).

Some of these algorithmic models have in recent years been hybridized for implementa-
tions that combine the use of computers and robotics. These models, instead of representing
the brain-body-environment system purely as computer algorithms, make use of programs
running on computers that are embedded in physical robots. Here, only the “brain” is for-
mulated algorithmically, while the body is modelled using mechatronic elements, and the
environment approximates to humans’ real environment. This approach is currently at the
heart of developmental robotics, where there is intense activity around the modelling of how
sensorimotor, cognitive and social skills develop (Oudeyer, 2010), particularly regarding the
acquisition and evolution of language (Steels, 2003; Cangelosi et al., 2010; Cangelosi and
Schlesinger, 2015; Oudeyer et al., 2018). Examples are discussed in Chapter 10, describing
experimental work using robots endowed with a system of intrinsic motivations that sponta-
neously explores their own body out of a form of artificial curiosity, and progressively learn
to move about, manipulate objects, produce vocalizations and predict their effect on other
individuals.

Building this kind of robotic model is interesting from several points of view. First,
regarding language, it addresses the symbol grounding problem, in other words the funda-
mental problem of how symbols are grounded in the physical world. The problem here, so
eloquently formulated by Steven Harnad (Harnard, 1990) is understanding how the symbols
commonly used for describing and modelling languages (such as words and grammatical
rules) can become meaningful in the physical and social reality of a real organism. In par-
ticular, it involves a capacity to link the abstract world of symbols to the concrete world
of numerical and chemical quantities that are perceived and manipulated by the brain and
the body in context. It is hard to see how models that are purely algorithmic, implemented
entirely on computers that in fine represent the world in a symbolic, discrete way, might
usefully inform any questions about symbol grounding. Hybrid algorithmic-robotic models,
on the other hand, that by definition are at the cutting edge between the symbolic and the
physical worlds, are extraordinary tools for studying this problem (Steels et Kaplan, 2001;
Steels, 2012). Here algorithmic models of language are confronted with physical and social
reality, and whether or not there is an effective grounding of symbols — a strong constraint
on the plausibility of these models — can be tested empirically. Chapter 4 describes the Talk-
ing Heads experiment, performed by Steels and his colleagues, in which a group of robots
invent and progressively negotiate a new language that enables them to communicate about
objects in their environment.
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Figure 1.4: Tad McGeer’s passive robot Walker (on the right). A mechanical structure with
neither computer nor internal power supply spontaneously exhibits a natural, balanced walking
movement when placed on a slope, showing that the interaction between the morphology of the
body and the force of gravity can be enough to generate structured movement. This has helped
us understand the extent to which the body itself could have engendered walking in humands.
In the same way, it is important to take account of the properties of the body when modelling
the formation of systems of language, and of speech in particular. Here, robotic models are an
invaluable aid. (photo: Tad McGeer)

There is another very good reason for using robots. As Esther Thelen and Linda Smith,
for example, have argued in their theory of development (Smith and Thelen, 2013), the
formation of behavioural and cognitive structures results from dynamic interaction between
the brain, the body and the environment. The body and the environment, whose physical
substrate gives rise to particular properties of structure generation, have a crucial role.
Embodiment, that is to say the material composition and the geometry of a body and
its sensorimotor system, can dramatically simplify the acquisition of certain behaviours.
Concerning bipedalism, for example, Tad McGeer showed that a purely mechanical leg
structure (see Figure 1.4), with no computer and not even any power supply, could with the
right geometry start to move forward in steps that have many properties in common with
human walking (McGeer, 1993). Concerning the acquisition of language, Chen Yu and Linda
Smith showed how geometrical hand-eye relations and the physical manipulation of objects
could create favourable situations for learning the meanings of first words (Yu and Smith,
2012; Smith et al., 2018). Thus, the body carries out physically a type of information
processing, sometimes referred to as “morphological computation” (Pfeifer et al., 2007).
In this context, robots make it possible to model mechatronically — in a straightforward,
realistic way — interactions between the brain, the body and the environment that would be
far too complex or even impossible to model algorithmically. In the models of morphogenesis
of speech that will be described in chapters 6, 7 and 8, we will see how simulating the
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physical properties of the vocal and auditive systems can provide a means of investigating
the specific role of the body in the formation of systems of vocalizations among a population
of individuals.

In other spheres, many other examples can be found today of robotic models being
used to enhance understanding of animal and human behaviour !, concerning such varied
phenomena as navigation and phototropy in insects, control of locomotion in dolphins,
distinguishing between self and non-self in human infants, but also the impact of the visual
system on the formation of linguistic concepts.

1.2.3 Exploring the evolution of speech in silico

The work to be presented in this book belongs in this methodological tradition of building
and exploring artificial models in silico. It will concentrate on the origin of one particular
aspect of language: speech sounds and the systems of vocalizations that are formed out of
them. Vocalizations, as explained in detail in the next chapter, constitute a conventional
code providing each language with a repertoire of forms for conveying its messages. This
code, which has both an acoustic and an articulatory element, organizes sounds into cate-
gories which are special to each linguistic community, and regulates the ways in which they
can be combined (these rules of sound-syntax are also cultural conventions). The system is
thus discrete and combinatorial. Without such a code, which could also be implemented in
a manual modality for signed languages, there could be no form, no content, and hence no
linguistic communication. How could such a code have arisen? In particular, how were the
first codes able to form themselves before there was any conventional linguistic communica-
tion, of which they are prerequisites? Why are the sound patterns of human languages the
way they are? These are the questions we will discuss in this book. They might be seen as
very ambitious, since they include many complex aspects, both individual and social, but at
the same time very modest in relation to the overall programme of research into the origin of
language and the evolution of languages. In fact, they only concern the origin of one prereq-
uisite of language among many others (such as the capacity to form symbolic representations
or the pragmatic capacity to infer the intentions of others by means of behavioural signals).

This book does not aim to suggest definitive answers. The origin of speech holds many
mysteries that science is only just beginning to uncover. The artificial systems that I present
and the in silico investigations that these systems allow are aimed first and foremost at
developing our intuitions. Through them, complexity can be handled in a concrete fashion,
doors opened that previously seemed firmly shut, new hypotheses explored and, perhaps
more importantly, new questions formulated that can change our perspectives and shed fresh
light on our quest for the origin of speech. As Niels Bohr famously said,“Every sentence I
utter must be understood not as an affirmation but as a question.”.

Chapter 2 presents an overview of speech structures as we understand them today and
some of the challenges to be overcome in understanding how speech originated. Chapter 3
locates the problems of the origin of speech in the general framework of the origins of form
in biology. It discusses the interrelationships linking the phenomena of self-organization and
natural selection, two creators of forms in the living world. This leads to the question of how
we should expect any potential explanation of the origin of living forms to be structured.
Chapter 4 makes a detailed survey of the literature, reviewing answers that have already
been proposed, and defends the approach that is at the heart of this book. Chapter 5 de-
scribes my methodology, that is the building of artificial systems, along with the goals and

1See for example my review (Oudeyer, 2010).
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scientific philosophy which drive it. Chapter 6 gives a formal description of an initial arti-
ficial system, and explains its operation. We see the emergence of a discrete, combinatorial
speech code shared by a population of individuals who at first only pronounce unstructured,
holistic vocalizations, and do not follow any rules of coordinated interaction. We will dis-
cuss, in particular, the role which morphological constraints on the vocal and perceptual
apparatus may or may not play in the formation of speech codes. Chapter 7 presents a
variant of this artificial system in which, in contrast to Chapter 6, there is no assumption
that individuals are capable from the outset of retrieving articulatory representations of the
sounds which they hear; this capacity will be learned, thanks to a quite generic neural ar-
chitecture. This system will also use a model of the human vocal tract for producing vowels,
which will enable us to specify the analogy between artificial and human systems: it will be
shown that the statistical regularities which characterize the vowel systems of populations
of artificial individuals are very similar to those of the vowel systems of human languages.
Chapter 8 presents an extension of the artificial system of Chapter 6, and shows how rules
of sound syntax, termed “phonotactic rules”, can arise. Chapter 9 discusses novel evolution-
ary scenarios that these in silico experiments might suggest. In particular, we will explain
how conventionalized, combinatorial speech codes could have emerged spontaneously out of
two pre-linguistic mechanisms. The first of these mechanisms is vocal imitation, which has
functions outside language. The second is the spontaneous exploration of the body from
intrinsic motives that push the organism to discover its sensorimotor space out of pure cu-
riosity, and in particular its vocal space through spontaneous babbling. Chapter 10 focuses
on these mechanisms of curiosity-driven learning, studying how they could play a crucial
role in the origins of speech and the discovery of communication in individuals. It outlines
computational models of intrinsically motivated spontaneous exploration, and presents a
series of experiments with embodied agents. These experiments show how a series of de-
velopmental stages of increasing complexity can self-organize, enabling individuals to make
ratcheting discoveries. These discoveries include how to move their body, how to interact
with objects, and how to produce speech, participate in speech interaction with others, and
finally use speech as a tool to act and achieve joint tasks with others others. Together with
self-organization arising from coupled neural maps and bodies, curiosity-driven learning is
shown to be a key driving force for the origins of cognition. This opens new perspectives to
understand natural intelligence, as well as to build flexible autonomous artificial intelligence.
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Chapter 2

Human Speech Structures

Language, and more generally communication, involves the transmission of information
between individuals. This needs a physical medium. The medium we currently use most is
the sound of the human voice, and it is structured in a very particular way. The capacity
for producing, perceiving and structuring the stream of sounds is called ‘speech’ . Other
media are manual signs (for sign languages) and writing. The sounds which humans use for
speaking are organized into a structure, sometimes referred to as the speech “code”, which
provides a repertoire of forms that are used as a physical vehicle for information. This code is
a prerequisite for communication in language. Without such a repertoire of forms, whether
acoustic or gestural, there is no way of transferring information between individuals. The
speech code is mainly a matter of convention, and there is an enormous diversity among
languages. The code regulates the manner in which vocalizations are organized (which is
discrete and combinatorial), the way in which sounds are classified, and the ways in which
they can be sequenced (defining the rules of sound-syntax). We will now describe how this
speech code is organized, focusing first on how sounds are produced and perceived.

2.1 The instruments of speech: the vocal tract and the
ears

We are dealing with a complex musical instrument: the vocal tract. This is organized into
two subsystems (see Figure 2.1): one generates a sound wave, the other shapes it. The first
system is subglottal. Together, the lungs and the diaphragm cause air to pass through the
trachea, which vibrates the larynx. The larynx is an assemblage of cartilages and muscles,
which generates a sound wave when it vibrates. The generated sound is made up of a great
number of frequencies. The second system, the supra-laryngeal, is a tube stretching from
the larynx upward and forward, dividing into the nasal and oral passages, and ending at
the lips and nostrils. The organs of the glottis, the velum, the tongue (tongue body and
tongue tip) and the lips make it possible to modify the shape of this tube, in particular
its length and volume. This change in shape results in the weakening or strengthening
of certain frequencies in the sound signal. Thus the production of sound with the vocal
tract resembles the production of sound with a flute: you blow at one end, and air passing

INote that the term “speech” is reserved here for acoustic and articulatory events independent of meaning
and is thus not a synonym for “language”.
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Figure 2.1: The vocal tract is organized into two subsystems: the subglottal system which provides
a source of sound, and the supra-laryngeal system whose changeable shape makes it possible to shape
this sound wave (adapted from Goldstein, 2003b).

through the ‘whistle’ makes a sound composed of many frequencies, which can be modified
by blocking the holes in the body of the instrument. Thus, speech reduces to moving the
various organs of the vocal tract.

The perception of sounds is carried out by the ear, in particular the cochlea (Figure 2.2).
The cochlea is the device which lets us register a certain number of parameters of sound.
Among these parameters is the decomposition of a sound into its component frequencies, or
harmonics. In fact, every complex sound can be seen as a superposition of sine waves, each
with a given frequency and amplitude. In mathematical terms, this is called a decomposition
into a Fourier series. The cochlea performs an approximation to this decomposition, due to
the basilar membrane. This membrane increases in thickness, and in its thinnest parts it
responds better to high frequencies, while in its thicker and heavier parts it responds rather
to low-frequency stimuli, corresponding better to its own inertial properties (Figure 2.3) .
Nerve cells called “hair cells” are linked to this membrane to gather information about the
stimulus. This information is passed by a network of fibres to the central nervous system.

2.2 How our brain plays the instruments of speech

How do the organs of the vocal tract control the flow of sound? What representations does
our brain use to produce sounds? How is the connection between production and perception
managed? These are the questions addressed by articulatory phonology (Browman and
Goldstein, 1986), which is the approach adopted in this book.

The central concept of articulatory phonology is the gesture. A gesture, a unit of action,
is the coordination of a certain number of organs (e.g. the tongue, the lips) to bring about
a constriction in the vocal tract. A constriction obstructs the passage of the sound wave. It
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Figure 2.2: The cochlea, speech perception organ. Its basilar membrane can decompose the sound
wave into a Fourier series, that is it can calculate the amplitude of its various harmonics (adapted
from Sekuler and Blake, 1994).

is a narrowing of the vocal tube. For example, the words “boat”, “parameter” and “method”
all begin with a closure of the lips. A gesture is specified not by the trajectory of one or
more organs, but by a constriction target defined by a relationship between organs. For
example, the opening of the lips is a constriction variable which can be implemented by the
movement of three organs, the upper and lower lips and the jaw (each controlled by a set
of muscles). An articulatory target (a constriction defined by a relationship among organs)
can be realized by several different combinations of movements by the organs.

The constriction variables, or systems of constriction, used to specify gestures are the
position of the larynx, the velum, the tongue-body, the tongue tip and the lips. Each of
these constriction variables can be controlled by the movement of several organs and the
many muscles which activate them. Figure 2.4 schematizes the constriction variables along
with the organs which can implement them.

Each constricting organ can produce gestures whose constriction varies along two con-
tinuous dimensions: place and manner of articulation. Among the places of articulation,
that is the places in the vocal tract where the narrowing occurs, the following can be men-
tioned: bilabial, dental, alveolar, palatal, velar, uvular and pharyngeal. Figure 2.5 gives
further examples. Narrowing can be achieved in a variety of that include stops (e.g. [d]),
fricatives (e.g. [z]) and approximants (e.g. [r]). Gestures which involve a severe narrowing
or a total blockage are called consonantal, and those which involve a wider articulation are
called vocalic, i.e. they are vowels.

When we speak, several gestures can be performed in parallel. Our vocalizations are thus
the parallel temporal combination of several gestures. This combination can be represented
by a “gestural score”, by analogy with musical scores (the gestural score shown in Figure
2.6 is for the word “pan”). Gestures in five constricting systems (velum, tongue tip, tongue-
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Figure 2.3: The basilar membrane decomposes the signal into its harmonics: it increases in
thickness, and in its thinnest parts responds better to high frequencies, while in its thicker and
heavier parts it responds rather to low-frequency stimuli, corresponding better to its own inertial
properties (adapted from Escudier and Schwartz, 2000).

body, lips, glottis) are represented on five different lines. The shaded boxes represent the
time intervals during which the gestures of each constrictor are active in the vocal tract.
The labels on the boxes indicate the place and manner of constriction.

Some phonologists use the concept of a phoneme to describe the sounds found in words.
This presupposes that words can be segmented into sequences of units called phonetic seg-
ments (although these do not necessarily correspond to the letters of the word when written).
A unit is an element that distinguishes two words such as “bar” and “par”. It is possible to
define phonemes in terms of the gestures that produce them and the way in which these
gestures are organized: a phoneme can be seen as a set of gestures (often just one) which
systematically recur in many words in a regular scheme of coordination.

So when we produce an utterance, it is gestures that are specified. Commands are sent
to the organs so that they they can implement the corresponding constrictions. Speech
production is thus organized on two levels: the level of the commands which define the
gestural score, and the level of implementation. The first level is intrinsically discrete
(but not necessarily discrete in the way that vocalizations as a whole are discrete, as we
will see). The second level is intrinsically continuous, since it corresponds to a trajectory
of the physical organs. The acoustic wave which is produced is related in a fixed but
complex manner to this trajectory. In fact, the nonlinear physics of the vocal tract are
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tract variable articulators involved
LP lip protrusion upper and lower lips, jaw
LA lip aperture upper and lower lips, jaw
TTCL tongue tip constrict location tongue tip, tongue body, jaw
TTCD  tongue tip constrict degree tongue tip, tongue body, jaw
TBCL tongue body constrict location tongue body, jaw
TBCD tongue body constrict degree tongue body, jaw
VEL velic aperture velum
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Figure 2.4: Constriction variables are used to specify gestures. Each of these variables can be
controlled by the movement of several organs and many muscles which activate them (adapted from
Goldstein, 2003b).

such that many different vocal configurations produce the same sound; or yet again certain
configurations which are very close in articulatory terms are very different acoustically. The
electro-mechanical properties of the cochlea also complicate the function which computes the
correspondence between the perception of a sound and the motor program which implements
it.

Articulatory phonology theory hypothesizes that gestures and their coordination are
represented in the brain not only for controlling the production but also for the percep-
tion of sounds. In fact, gestures are the representations which make a connection between
perception and production possible. The Motor Theory of Speech Perception (Liberman
and Mattingly, 1985) takes this idea further in proposing that it is muscular representations
that are used by the brain for classifying sounds — although this theory has been contested
(Moulin-Frier et al., 2012). Thus the brain should be capable of transforming gestural rep-
resentations into muscular representations (to control the speech organs) and vice versa.
Figure 2.7 summarizes this organization.
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Figure 2.5: Places of constriction range between the larynx and the lips (adapted from Escudier
and Schwartz, 2000).

2.3 The organization of the speech code

Comparison of the gestural scores forming words shows striking regularities both within one
language and between languages.

2.3.1 Discreteness and combinatoriality

The complex vocalizations that we produce are coded phonemically. This has two implica-
tions: First, in any language, the articulatory and acoustic continuum which defines gestures
is broken up into discrete units; secondly, these units are systematically re-used to construct
the representations of the next higher linguistic level, such as the syllable level. This is what
we mean here by combinatoriality.

It would be possible to imagine that each syllable is specified by a gestural score consist-
ing of unique gestures or unique combinations of gestures. For comparison, there are writing
systems which use a unique holistic symbol for each syllable (Nakanishi, 1998). These are
syllabaries, as opposed to alphabets. In fact, in contrast with writing systems, all human
languages have repertoires of gestures and combinations of gestures which are small in rela-
tion to the repertoires of syllables, and whose elements are systematically re-used to make
syllables. In the languages of the UPSID,5; database (UCLA Phonological Segment In-
ventory Database) initially elaborated by Maddieson (Maddieson, 1984) and containing 451
languages, the average is about thirty phonological segments per language. More precisely,
22 consonants and five vowels are the most frequent counts, as figures 2.8 and 2.9 show. This
small number (22) has to be contrasted with the considerable number of phonemes that we
can possibly produce: for one thing, the gestures can vary the place of their constriction
continuously from the larynx to the lips; they can also continuously vary the manner of ar-
ticulation (that is, the shape and degree of narrowing). Thus, as phonemes are combinations
of gestures, it is clear that the combinatorial possibilities are immense. Moreover, we have
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Figure 2.6: An example of a gestural score: the word “pan” (adapted from Goldstein, 2003b).

examples of languages like !Xu (a member of the Khoisan family of languages in southern
Africa) that, impressively, use more than 140 phonemes (but such languages are very rare).
The total number of phonemes in the UPSID database is 920. Nevertheless, despite all these
possibilities, any given language will generally use only a handful of phonemes, recombining
them in a systematic fashion to form a few hundred syllables that are in turn recombined
to form tens of thousands of words.

This phenomenon of systematic re-use also applies to the gestures themselves, which
are recursively constructed on this principle. In fact we have just explained that the place
and manner of constriction which specify a gesture may vary continuously. Now in a given
language, only a small number of places and manners occur and are re-used (varying the
combinations, for sure) to make the gestures. Gestures could in principle have places of
articulation which are peculiar to each, while still being re-used in many syllables, but this
is not what happens. For example, for each separate manner of articulation, 95 percent of
languages only use three places.

Thus, from the vast continuous space of possible gestures, speech carves out basic build-
ing blocks which it re-uses systematically. The phonemic and gestural continuum becomes
discretized. Speech, already discrete in its manner of control involving motor commands
specifying articulatory targets, is now also discrete in terms of the systems it uses (that is,
the possible articulatory targets in a language are limited to small finite numbers, although
physically they could be distributed across the whole articulatory continuum) and combi-
natorial. There are thus two remarkable points: first, the discretization of the continuous
space of gestures; and second, the three levels of systematic re-use of resources:

e places and manners of articulation are re-used to make gestures
e gestures and their combinations are re-used to form syllables

e syllables are re-used to form words
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Figure 2.7: The brain handles three representations in the perception and production of speech:
an auditory representation, a muscular representation and a gestural representation, which is the
representation used to classify sounds. The brain can pass from one representation to another,
according to the theory of articulatory phonology (adapted from Goldstein, 2003b).

2.3.2 A code shared culturally

All the speakers of a given language perceive and classify sounds in more or less the same way.
However, speakers of different languages can perceive and classify sounds very differently.
Every linguistic community has its own system for categorizing vocalizations, which makes
it a form of cultural convention. We shall now examine this property of human speech in
more detail.

For a start, speech perception is characterized by a psychological uniformity among
the members of a linguistic community, despite the great physical variability of speech.
Physically different sounds associated with different trajectories of the organs of the vocal
tract can in fact correspond to the same sound, psychologically speaking, as the [d] in
“idi”, “ada” or “odo” for speakers of English. The sounds are different because the gestures
which specify the [d] are superimposed on the gestures which specify the [i], [a] and [o]:
the articulatory targets are temporarily in competition with each other, and the organs
have to make a compromise to satisfy them as well as possible. The result is that the
specifications of the gestures are not exactly met, but are approximated by the low-level
muscular system. This is the phenomenon of co-articulation, which explains the acoustic and
motor variability of sounds. Co-articulation occurs not only when the contexts of a segment
change, but also when the rhythm of speaking changes. Thus each phoneme in a language
can be realized in several different ways while still remaining identifiable by speakers of
the language. The variants of a phoneme which speakers are able to recognize are called
allophones. It is in the space of gestures that variations are the weakest: co-articulation
can bring into play very variable muscular or acoustic trajectories, which nevertheless more
or less preserve the articulatory targets in terms of the relationships among the organs.
This is why gestural representation is central to speech. However, even if the level of motor
commands is invariant, the level of their realization involves variability which is managed
in precise and particular ways in each language. In a given language, all speakers decide
in the same way which sounds are variants of the same phoneme and which are variants of
different phonemes. This organization of the space of sounds is culturally specific to each
language. For example, native speakers of Japanese identify the [r] of “read” and the [l] of
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Figure 2.8: Distribution of counts of vowel inventories in the languages of the UPSID database
(adapted from Escudier and Schwartz, 2000, Vallée, 1994).

“lead” as allophones, that is they classify these two sounds under the same heading, whereas
for English speakers these are two distinct categories.

Not only do speakers of the same language have a shared way of classifying sounds which
is specific to that language community, but they also have a shared way of perceiving sounds
subjectively: they have the same “sensations” of sounds. Speakers of other languages will
have different sensations. This is shown by the “perceptual magnet” effect (Kuhl et al.,
1992). When subjects are asked to judge the similarity between two sounds (on a scale of
1 to 10), and where these sounds are regularly spaced at a given distance D in a physically
defined space (e.g. a spectrum of amplitudes of Fourier components), it is noticed that
when two sounds belong to the same phonemic category, the similarity reported by the
subjects is greater than that which they report for two sounds which do not belong to
the same phonemic category but which are nevertheless the same distance apart on the
physical scale. To summarize, intra-categorial perceptual differences are diminished, and
inter-categorial differences are augmented. It is a kind of perceptual deformation or acoustic
illusion (“perceptual warping”), in which the centres of categories perceptually attract the
elements of the categories like magnets. Once again, this a culturally specific phenomenon:
the perceptual deformations are particular to each language. Figure 2.10 shows this effect.

2.3.3 Regularities in human languages

Statistical study of languages shows universal tendencies in the inventories of phonemes
and the gestures which compose them. Certain phonemes are very frequent, while others
are very rare: 87 percent of languages in UPSID have the vowels [a], [i] or [u], while only
five percent have [y], [ce] or [w]. More than 90 percent of languages have [t], [m] and [n]
in their inventories, as Figure 2.11 shows. It is the same with gestures, and in particular
the places and manners of articulation; 15 percent of languages use alveodental and bilabial
places, but only 3 percent use retroflex and uvular places. Similarly, 38 percent of languages
include plosives, while only 3.9 percent have trills, taps or flaps (Vallée, 1994; Schwartz et
al., 1997b).
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Figure 2.9: Distribution of counts of consonant inventories in the languages of the UPSID database
(adapted from Escudier and Schwartz, 2000, Vallée, 1994).

The regularities do not apply only to phonemes individually, but also to the structure
of phoneme inventories. This means for example that if a language has a front unrounded
vowel of a certain height, like the [e] in “bet”, it will also usually have a back rounded
vowel of the same height, like the [aw] in “hawk”. Thus the presence of certain phonemes is
correlated with the presence of other phonemes. Some vowel systems are also very common,
while others are rarer. The five-vowel system /[i], [e], [a], [o], [u]/ is found in 28 percent of
languages, as Figure 2.12 shows (Vallée, 1994).

There are also regularities governing the ways in which phonemes combine. In a given
language, not all possible phoneme sequences are allowed. Speakers know this (whether
consciously or unconsciously), and if they are asked to invent a new word, it will be made
up of non-arbitrary phoneme sequences (some will never be used). For example, in English
“spink” is a possible word, while “npink” or “ptink” are not possible. Here again, the rules
governing the possible ordering of phonemes, called phonotactics, are cultural and particular
to each language. In Tashliyt Berber, “tgzmt” and “tkSmt” are allowed, but they are not
allowed in English. Generally speaking, at the level of the syllable, which can be broken
down into an ordered sequence of phonemes, we remark that the phonemes of a language can
only occupy specific slots in this sequence. There are languages like Japanese where syllables
can comprise two phonemes only; consonants are only allowed in the first slot and vowels
in the second slot (these syllables are termed “CV”). Sometimes it is groups, or clusters of
phonemes that can only occur in certain places in the sequence.

Moreover, there are phoneme combinations which are statistically preferred over others
in the languages of the world. All languages use syllables of the CV type, while many do not
allow consonant clusters at the beginnings of syllables. Statistically, languages prefer CV
syllables, then CVC syllables, followed by CC, CCV, and CVVC/CCVC/CVCC. Syllables
tend to begin with a phoneme with a high degree of constriction, and then to let the degree
of constriction decrease until the middle of the syllable, and then to increase the level of
constriction again up until the last phoneme of the syllable. This is known as the “sonority
hierarchy”.
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Figure 2.10: Kuhl et al. required subjects to rate pairs of consonants for similarity on a scale
of 1 to 10, where these consonants varied continually between [r] and [l] (they were followed by the
[a] vowel), and their values are represented by the circles in the figure above (Kuhl et al., 1992)
. One group of subjects were American, the other group were Japanese. It is possible to derive
from Kuhl’s results a graphic representation showing the subjective way in which they perceived
each consonant. This graph of their subjective perception is given in B for the Americans and in
C for the Japanese. Note that the Amrericans subjectively perceive two categories of sound in this
continuum, whereas the Japanese only perceive one. Moreover, within the neighbourhoods of |r]
and [l] for the Americans, the sounds are subjectively more similar to each other than they are
when measured objectively in physical space (adapted from Kuhl et al., 1992).

2.4 Diversity across human languages

Some of the regularities mentioned in the previous section are systematic and common to
all languages. This is the case with the re-use of phonemes and gestures, as well as their
discretization; it is also the case with the shared classification of sounds by speakers of each
language, as well as with acoustic illusion phenomena related to speakers’ knowledge of the
phoneme inventories of their languages.

On the other hand, regularities in the inventories of phonemes and gestures, as well
as the phonotactic preferences, are only statistical. This sheds light on a striking aspect
of the speech systems of the world — their diversity. Recall that the languages of the
UPSID database include 177 vowels and 645 consonants (and again, this classification
groups together phonemes which are not exactly identical). While the average is five vowels
per language, some have more than 20; while the average is 22 consonants per language,
some have only six (e.g. Rotokas, a language of Papua New Guinea) or have 95 (e.g. 'Xu).
As we have seen above, the ways in which sounds are classified also vary greatly; Chinese,
for example, uses tones, that is musical pitch, to differentiate sounds, something which the
ears of English speakers have difficulty in catching.
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Figure 2.11: Distribution of consonants in the UPSID database (adapted from Escudier and
Schwartz, 2000; Vallée, 1994).

2.5 Origins, growth and form: three fundamental ques-
tions

The previous sections have described some of the essential structures of human speech and
looked at their role in human languages today. Possession of a speech code is a basic attribute
of modern humans. The origin of these structures (which we might also term “traits”, or
“forms”) is a fundamental question that is being addressed by research into the evolution of
language, in the same way that the origin of morphological structures such as the hands, or
traits such as bipedalism are addressed by the science of biology.

The speech code is very complex, and seeking to explain its origin implies answering
several questions corresponding to different perspectives. For a start, we have seen that it is
a conventional system — it is linked to norms formed by the interaction of individuals during
the course of their lives. A number of works, and in particular approaches that have used
algorithmic models based on the notion of language games (Steels, 1997; Kaplan, 2000 ; de
Boer, 2001; Oudeyer et Kaplan, 2007; Steels, 2012; Moulin-Frier et al., 2012) have shown
how a linguistic norm can come into being and evolve among a population of agents whose
environment includes preexisting conventionalized and ritualized protocols of interaction
that can structure language learning.

The separate question of how the very first norms were established, at a time when ritu-
alized and structured interactions did not exist and thus no language games were possible,
remains largely unexplored. And this question applies particularly to the formation of the
first speech codes. We have seen how speech codes provide modern humans with a repertoire
of forms for transmitting information within a framework of conventionalized communica-
tion. Now, without a speech code (or manual sign code), it is impossible to have ritualized
communicative interaction, because this requires a shared repertoire of forms. So there is
the question of how a speech code could arise without there already being conventionalized
or ritualized interactions, that is to say without presupposing the existence of any linguistic
convention shared by a whole community.

Next, we need to be able to explain why humans speech codes are the way they are.
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Figure 2.12: Distribution of vowel systems in the languages of the UPSID database. The triangle
represents two dimensions characterizing vowels, the first and second formants (formants are the
frequencies for which there is a peak in the energy spectrum of the signal, where the harmonics
have the greatest amplitude). (adapted from Escudier and Schwartz, 2000; Vallée, 1994).

Looking at such systems from the outside (as a linguist does), how does it come about that
speech is discrete, and carves basic building blocks out of the articulatory continuum and
re-uses them systematically? How come sounds are grouped into categories? Why are there
preferences for places and manners of articulation and for phonemes in the repertoires of
the world’s languages? Why are there syntactic rules governing the formation of syllables?
Why are some rules preferred over others? Why do we have both regularity and diversity
at the same time?

Looking at such systems ‘from the inside’, as a psychologist or neuroscientist does, par-
allel questions arise: How can speakers acquire a sound system as they develop? Which sen-
sorimotor or cognitive mechanisms will be used? How is the repertoire of gestures learned?
How is that that sounds are perceived subjectively, with acoustic illusions?

The question of the origin of the first conventionalized speech code, the question of the
general form of this code in contemporary languages, and the question of the ontogenetic
acquisition mechanisms for this code are normally dealt with by quite independent research
communities, and are not taken on together. This, however, is what we will attempt in
this book, in the modest framework of the computational models that will be presented.
One of the things we will try to show, moreover, is that taking these problems into account
simultaneously can be done in a reasoned way and can yield theories which are not too
complex and illuminate them with a new and original light. It is by trying not to isolate
the separate questions too much from the start, keeping in mind the systemic and complex
nature of speech, that one may show that the complexity of these problems can after all be
reduced 2.

The questions which arise concerning the origin and form of the speech code are analogs
of the questions which arise in general for biologists on the origin of the shapes, structures
and characteristics of living organisms. It is essential to consider these questions within a

2Keeping a certain level of complexity in problems at a global level evidently leads to reducing complexity
at the local level: Chapter 5 will discuss the advantages and disadvantages of this approach.
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general framework of the origin of forms in nature. This allows one to specify what kinds of
answers are required and what pitfalls one should avoid. For this reason, before continuing
to spell out the problems of the origin of the speech code and to develop precise theories
about it, we will take a step back and reflect on the mechanisms responsible for the origin
of forms in nature in general. The next chapter will therefore set out the phenomenon of
self-organization, characterizing a certain number of form-creating mechanisms particularly
responsible for shaping living organisms. Above all, we will attempt to present a reasonably
argued relationship between the concept of self-organization and that of natural selection.
This will allow us to outline the structure of the arguments necessary for explaining the
origin of living forms.



Chapter 3

Self-Organization and Evolution of
Life Forms

3.1 Self-organization

In nature, self-organization can be seen in the spontaneous formation of organized forms and
patterns whose organizational properties are qualitatively different from those present at the
local level. For example, the global symmetry of an ice crystal is not a direct transposition of
the form or the properties of the interacting water molecules of which it is composed — there
is a qualitative difference. Self-organization is a fundamental concept of modern science!
that can be observed in a whole variety of natural systems, whose form-creating mechanisms
are not necessarily instances of natural selection (for example, the mechanisms involved in
the formation of inorganic structures). There are certainly no universal principles which
enable us rigourously to unite all self-organizing systems, but nevertheless a number of
components do recur with some frequency: breaking of symmetry, tension between forces,
positive feedback loops, the presence of attractors in dynamic systems, a flow of energy
through dissipative structures, nonlinearities and bifurcations, and noise (see Philip Ball’s
The Self-Made Tapestry (Ball, 2001) for a variety of examples). The next sections give two
classic examples of systems which have this property of self-organization: Rayleigh-Bénard
convection and the ferro-magnetization . Both examples are taken from the inorganic world,
and are therefore illustrations of mechanisms of morphogenesis that do not involve natural
selection.

3.1.1 Rayleigh-Bénard convection: Structure formation out of equi-
librium

The first example is the formation of so-called Rayleigh-Bénard cells. This phenomenon
arises when a thin layer of liquid is placed on the level top of a stove. If the liquid is not
heated, then it is in a state of equilibrium in which none of its particles move. The properties
of the system are homogeneous; the temperature is the same throughout. The system is
symmetrical at the macroscopic level. Now if the stove is gently heated from below, the heat

1Contrary to what one sometimes reads in the literature, self-organization is not a mechanism, but a
property of a growing system, in the same way than symmetry of size can be a property of a system.
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will be transferred from the bottom to the top by a process of thermal conduction. In other
words, there is no macroscopic displacement of fluid, but rather an increase in the thermal
agitation of the particles which, from one neighbourhood to another, move to the colder
surface. Layers of liquid at different temperatures acquire different densities and hence
different masses; under the effect of gravity, there is thus a force which pushes the higher
(colder) layers toward the bottom and the lower (warmer) layers toward the top. This force
is dependent on the difference in temperature between the bottom and the top of the liquid.
The force is in competition with the viscosity of the liquid, which itself inhibits movement.
This is why, when the temperature difference is small, the liquid itself does not move and
only thermal conduction takes place. But if the temperature passes a certain threshold,
then the liquid suddenly begins to move at the macroscopic level, giving the appearance of
convection currents. What is interesting is that these currents are not random, but organize
themselves into quite particular structures which break the symmetry of the liquid. However,
the symmetry does not disappear altogether, and its typical dimensions are several orders
of magnitude greater than those of the forces applying at the molecular level. At first,
just above a “critical” temperature threshold, parallel rectangular stripes are formed (see
Figure 3.1). Two adjacent stripes circulate the liquid in opposite directions to each other.
The initial symmetry is minimally broken: since it has two even dimensions, the system
stays symmetric along the dimension which is parallel to the stripes. If the temperature is
raised further, then stripes at right angles to the first stripes appear spontaneously. The
liquid is organized into square convection cells. If the temperature is raised still further,
then polygonal forms appear, which can sometimes cover the whole surface with regular
hexagons. Figures 3.2 and 3.3 show these different states. If the temperature is raised very
high, the regular pattern becomes chaotic and turbulent. If the heating is stopped, so as to
equalize the temperature at the top and the bottom, the convection patterns disappear and
the liquid returns to its equilibrium state, with a uniform temperature and no macroscopic
displacement of molecules. It is interesting to remark that these successive, spontaneous
steps are the result of a continuous, linear increase in temperature: the dynamic of the
system is therefore nonlinear. Here we have an example of a system in which the formation
of patterns requires that the system be pushed far from its equilibrium by a continuous flow,
in and out, of energy (thermal agitation in this case). Such systems are known as dissipative
systems (Prigogine and Nicolis, 1977). However, self-organization is not concerned only with
systems pushed out of equilibrium, but can equally take place when a system evolves toward
its equilibrium state.

3.1.2 Ferro-magnetization: Structure formation at equilibrium

Another example of a natural system with the self-organizing property is that of iron plates.
An iron plate is an assembly of atoms each of which is a sort of microscopic magnet. Each
atom can have two possible magnetic orientations, termed -1 or +1. The state of each atom
depends on and evolves as a function of two parameters: the states of its neighbours, whose
majority orientation it tends to adopt, and temperature, which makes it randomly change
state all the more often when it is raised (and which thus has no effect when it is zero). First
of all, note that the behaviour of a piece of iron, a macroscopic arrangement of its atoms,
is interesting at zero temperature. Whatever the initial state of the atoms, the system self-
organizes in such a way that after a certain time, all the atoms are in the same state, which
can be +1 or -1, and remain in this state of equilibrium. That is, even if initially each atom
is in a random state, a kind of global consensus is formed according to which even two quite
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Figure 3.1: If a thin layer of oil is heated on a stove, then given a certain minimum temperature
difference between the top and the bottom of the liquid, there is self-organization of convection
currents in parallel stripes (adapted from Ball, 2001).

distant atoms end up with the same orientation. The two equilibrium states, “all atoms
are +1” or “all atoms are -1” are called the attractors of the dynamical system formed by
the set of atoms. If the orienting of each atom is carried out asynchronously and randomly,
which is a good approximation to reality, it is not predictable which equilibrium state will
be reached: this depends on the particular history of each system. The outcome is most
uncertain when the atoms are in a random state, so that there are equally many in the -1
and +1 states. This is a globally symmetric state of the system, as neither orientation is
favoured. This initial state is an equilibrium since just as many atoms will switch from +1
to -1 as in the opposite direction, but it is an unstable equilibrium. In fact the random
updating of the states of the atoms causes fluctuations which make the ratio of one state
to the other vary around 1. Then, for example, the more +1s there are, the greater is the
probability that atoms with this state will convert others to the same state as themselves.
This can ‘snowball’: it is what is called a positive feedback loop. At a certain moment, one
of the random fluctuations in the ratio of states is amplified by a positive feedback loop.
This is how one particular magnetic orientation is “chosen” by all the atoms and magnetizes
the piece of iron at a macroscopic level. Symmetry is thus broken.

Now if the temperature exceeds zero and randomly changes the states of the atoms more
often as it gets higher, there are three possible situations. First of all, if the temperature is
low, then its effect only slows down the convergence of the piece of iron toward a state where
all the atoms share the same magnetic orientation. Conversely, if it is very high, it becomes
the dominant factor among the forces affecting the local magnetic interactions between
atoms. Here, no order appears and the state of each atom evolves randomly over time.
The piece of iron is demagnetized. What is more interesting is an intermediate situation,
corresponding to a very narrow temperature band: large regions appear in the piece of iron
with complex but well-defined forms, composed internally of atoms which are mostly in the
same state. It is a state between order and disorder, corresponding to “complexity at the
edge of chaos” (Kauffman, 1996). By changing the temperature, one can see phase changes:
from a completely ordered state, after a certain critical threshold, a state with complex
patterns is reached, after which total disorder soon appears. Figures 3.4 and 3.5 represent
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Figure 3.2: Representation of convection currents in Bénard liquids when the temperature is
raised: at first parallel stripes are formed, then there are square cells, and for higher temperatures
polygons appear. If the temperature is raised even further, the regular patterns dissolve into
turbulence (adapted from Tritton, 1998; and Velarde).

these phase transitions in a two-dimensional model of ferromagnetic plates.

These two examples of self-organizing systems have some points in common which we
will see again in the artificial systems described in the following chapters. They are both
characterized initially by symmetry at the macroscopic level which is then disrupted. Nev-
ertheless the final self-organized state is still characterized by other symmetries which make
it an “organized” system; it is possible to predict the overall form of this global state qual-
itatively but not quantitatively because it depends on the history of the system subject to
random fluctuations. There is competition between forces pushing the system in different
directions. The system has a control parameter whose values determine several types of
behaviours or “phases”, and continuous linear variation along this parameter is mapped to
rapid nonlinear transitions between the different phases.
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Figure 3.3: At a certain temperature, the Bénard cells tesselate the surface with regular hexagons
(Photo: Manuel Velarde, Universidad Complutense, Madrid).
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Figure 3.4: Representation of the states of atoms in a two-dimensional ferromagnetic structure
model. The points are black or white according to whether the atoms they represent are in state
+1 or -1. The left-hand square shows a typical configuration starting from an initial random state
with low temperature (the atoms are almost all in the same state); the right-hand square shows a
typical configuration when the temperature is raised (the atoms are in random states); the middle
square shows a typical configuration in an intermediate temperature band (the atoms form regions
with complex shapes within which all are in the same state.

3.2 Self-organization, natural selection and individual de-
velopment

The examples of the previous section were chosen deliberately from inorganic systems to
show that the property of self-organization can be found in systems whose mechanisms are
very different from that of natural selection. However, self-organization applies to living
systems too. It is a concept widely used in several branches of biology. It is particularly
central to theories which explain the capacity of insect societies to build nests or hives, to
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Figure 3.5: Representation of the magnetization of a two-dimensional ferromagnetic model, after
settling from a random state, and as a function of temperature. At low temperatures, the metal
self-organizes and all atoms adopt the same magnetic orientation. Two orientations are possible,
corresponding to two opposing magnetizations, as can be seen in the figure. At high temperatures,
the final state also consists of atoms in random states, and yet globally there are not more atoms
oriented in one direction than in the other: the iron fragment is not magnetized. Between the
magnetized and non-magnetized states, it can be seen that the transition is rapid and nonlinear.
This diagram is also a way of showing the phenomenon of bifurcation at a branching point.

hunt in groups or to explore in a decentralized and effective way the food resources of their
environment (Camazine et al., 2001). In developmental biology, largely as a consequence of
the visionary work in mathematical and computer modelling of Alan Turing in the 1950s
(Turing, 1952), it is used, for example, to explain the formation of coloured patterns on
the skins of animals like butterflies, zebras, jaguars or ladybirds. Self-organization also
characterizes the way shoals of fish move in a synchronized way to avoid predators (Ball,
2001).

It seems possible, then, that there are shape- and pattern-forming mechanisms in biolog-
ical systems which are orthogonal to natural selection, just because they have the property
of self-organization. Now natural selection is at the heart of almost all the arguments in
biology when it comes to explaining the presence of a shape, a pattern or a structure in an
organism. What, then, is the relationship between the the theory of natural selection and
self-organization?

Some researchers have suggested that self-organization casts doubt on the centrality of
natural selection in explaining the evolution of living organisms. Waldrop writes (Waldrop,
1990):

“Complex dynamical systems can sometimes go spontaneously from randomness
to order; is this a driving force in evolution? ... Have we missed something about
evolution — some key principle that has shaped the development of life in ways
quite different from natural selection, genetic drift, and all the other mechanisms
biologists have evoked over the years? ... Yes! And the missing element... is
spontaneous self-organization: the tendency of complex dynamical systems to
fall into an ordered state without any selection pressure whatsoever.”

However, rather than seeing self-organization as a concept which minimizes the role of
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natural selection by suggesting competing form-creating mechanisms, it is more accurate
to see it on the one hand as belonging to a somewhat different level of explanation and
above all on the other hand as describing mechanisms which actually increase the power of
natural selection by an order of magnitude. Mechanisms with the self-organizing property
are completely compatible with the the mechanism of natural selection in explaining the
evolution of life forms.

3.2.1 Natural selection and the limits of neo-Darwinism

To see the matter clearly, it is first necessary to recall the mechanism of natural selection
that underlies Darwin’s theory of evolution. It is a mechanism characterizing a system
composed of individuals each having particular traits, shapes or structures. In addition,
the individuals in this system are capable of replication. This replication must occasionally
produce individuals which are not exact copies of their ancestors, but are slight variants.
These variations are the source of diversity among individuals. Finally, each individual
has a greater or lesser capacity for replication, according to its surrounding environment.
Moreover, most often the environment is such that not all individuals can survive. Thus,
differential replication of individuals in an environment, which does not allow everyone to
survive, gives rise to “selection” of those who are most capable of replicating themselves. The
combination of the processes of variation and selection means that, over the generations, the
structures or traits of individuals that best help them to reproduce themselves are preserved
and improved upon.

Now there is one crucial point on which the theory of natural selection as formulated
by Darwin is neutral: it is the way in which variation is generated, and more generally
the ways in which the individuals with their shapes, traits and structures are produced.
Neo-Darwinism, which can be seen as a 20th century extension of Darwin’s theory, provides
an explanation: the biological structures of individuals are specified by their genes, which
control how an organism is constructed, and mutations and crossover (in the case of sexual
reproduction) are the engines producing variation in the properties or traits of these struc-
tures. This explanation would be sufficient if the relationships between genes and traits or
shapes of the organism were simple, direct and linear. In this case, exploration of the space
of phenotypes (which determine, along with the environment, the relative effectiveness of
the genes at replicating) could simply involve studying changes in genetic sequences by mu-
tations and crossover. Now the mechanisms of mutation which bring about these changes
within the space of genotypes are rather straightforward and of little amplitude (most mu-
tations only affect a very small part of the genome when replication succeeds). What this
means is that under the hypothesis that phenotypic and genotypic space have the same
structure and can be mapped approximately linearly, the space of possible biological forms
can be searched quasi-continuously, by successive small modifications of pre-existing forms.
Fortunately for the appearance of complex life-forms, this is not the case. In fact, although
this mechanism of small successive variations in form is notably effective for fine tuning the
structures of organisms, it would make the search for forms as complex as those of organ-
isms such as mammals equivalent to the search for a needle in a haystack (Keefe et Szostak,
2001).
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3.2.2 Epigenetic self-organization

It is here that the concept of self-organization comes to the rescue of this naive search
mechanism in the space of phenotypic forms. In fact the relation between genes and the
forms of organisms is complex and strongly nonlinear. Organisms are constructed starting
from a stem cell containing a whole genome. This stem cell, together with all its biophysical
structures, can be seen as a dynamic system parameterized by its genome, influenced by
perturbations imposed by the environment, and which progressively engenders a complete
organism as it develops. This processes is known as ontogenetic development, or sometimes
epigenesis when full consideration is given to the role of the organism’s interactions with its
environment (Gottlieb, 1991; Smith and Thelen, 1993). This dynamic system is crucially
a self-organizing system with the same type of properties as the self-organizing systems
described in the previous section. The genome can be seen as a set of parameters analogous
to temperature and the viscosity of liquids in Rayleigh-Bénard systems, and the environment
as analogous to noise (but evidently highly structured noise!). Thus the development of
an organism from a stem cell has strong similarities to the the self-organized formation of
Bénard cells: shapes, structures and patterns appear at the global level, and are qualitatively
different from those implementing functioning at the local level, that is, different from the
patterns characterizing the structure of the stem cell and its genome. The hexagonal pattern
which can appear as a result of a simple difference in temperature in a homogeneous liquid
gives an idea of the way in which a simple sequence of nucleotides, enclosed in a system
of molecules which transforms them automatically into proteins, can generate a bipedal
organism endowed with two eyes and ears and an immensely complex brain.

3.2.3 Attractors, non-determinism and saltationist evolution

As with Rayleigh-Bénard systems or ferromagnetic plates, dynamic systems defined by the
cells and their genomes are characterized by a landscape of attractors: there are large regions
in the parameter space within which the dynamic system systematically adopts behaviour
which is more or less the same. For Bénard systems, there is a range of temperatures
giving rise to parallel stripes which is wide enough to locate easily. For ferromagnetic
plates the range of temperature in which the system settles to global magnetic coherence
is also very wide. For living organisms it is not only possible to generate self-organizing
structures with complex global properties, but in addition these structures are generated
by genomes belonging to broad sub-spaces of genome space, called basins of attraction
(Kauffman, 1993). The structuring of genome space into basins of attraction by this kind of
dynamic system facilitates the evolutionary search of the space of forms so that it does not
resemble a search for a needle in a haystack. As in ferromagnetic systems, the structured
noise imposed by the environment on the development of the dynamic system can lead it to
follow developmental pathways that are different, starting out from more or less identical
initial conditions and with the same mechanisms. For pieces of iron at low temperatures,
this corresponds to magnetization in one direction or another. For a living organism, this
corresponds to its possible shapes; this is how it happens that even monozygotic twins can
show quite important morphological differences.

This insight, of which Waddington (Waddington, 1946) was one of the precursors, also
illustrates why the relationship between genes and the forms of organisms is not only com-
plex and nonlinear, but also non-deterministic. As in Bénard systems where search of the
parameter space of temperature can sometimes lead to fast and qualitative changes in the
behaviour of the system (for example the change from parallel stripes to square cells), which
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have been called phase-transitions, the search within genome space can also lead to fast qual-
itative changes. This can correspond to the numerous observations that have been made
of rapid form-changes in evolution, as witnessed by the fossils studied by anthropologists,
and which are the basis of the theory of punctuated equilibrium proposed by Eldredge and
Gould (Eldredge and Gould, 1972).

The self-organizing properties of the dynamic system composed by the cells and their
DNA thus adds crucial structuring to the phenotypic space as the individual develops by
constraining this space and so making the discovery and natural selection of complex, robust
forms much easier.

On the one hand, these properties enable a genome to generate complex, highly organized
forms without the need for precise specification of each detail in the genome (in the same
way as Bénard’s polygonal shapes are not specified precisely, or encoded in a plan, in
the properties of the liquid’s molecules). This extends all the way from the formation of
regular patches on the skin of the leopard to the formation of sensorimotor and behavioural
capabilities such as walking on two legs, as Thelen and Smith’s theory of infant development
based on dynamic systems (Smith and Thelen, 1993) has so ably demonstrated.

On the other hand, these self-organizing properties structure the landscape of possible
forms into basins of attraction within which they resemble each other greatly (here is where
gradual evolution happens, involving fine tuning of existing structures), and between which
there can be substantial differences among forms (transitions from one basin to another are
what provide abrupt and powerful innovations in evolution). To give a simple picture, self-
organization provides a catalogue of complex forms distributed over a landscape of valleys
in which and between which natural selection moves and makes its choices: self-organization

proposes, natural election disposes?.

3.2.4 The structure of evolutionary explanations

This view of the relationship between natural selection and the concept of self-organization
not only allows a unification of the concerns of many researchers who often only work on
one of the two aspects, but also shows up the need for scientific explanations of the form
of organisms which are more complete than those that are often put forward. In fact,
one often sees studies explaining the presence of a shape or trait in an organism in terms
of the reproductive advantage that it confers. This reproductive advantage is sometimes
transformed into a survival advantage, or even more abstractly into an advantage in realizing
some function, but such arguments are just alternative ways of talking about reproductive
advantage. For example, bipedalism in humans might be explained by the fact that in the
savannah environment walking on two legs helps them to survey their environment better,
for predators and food alike, and thus to survive more easily and logically to reproduce
more effectively. Another example, much closer to the questions which concern us in this
book: following for example Lindbléom (Lindblém, 1992), we might try to explain vowels
systems, made up of elements sufficiently distinct from each other, by the fact that they

20bviously this is only an image to facilitate understanding, because with its movements natural selection
actually enables new mechanisms, themselves self-organized, to appear, and these in turn structure the space
of forms within which it moves. Thus, natural selection participates in the formation of these mechanisms
which help it to move effectively in the space of forms. Vice versa, the mechanism of natural selection
certainly appeared in the history of life due to the self-organized behaviour of systems which were as yet
completely unconnected to natural selection. Natural selection and self-organizing mechanisms thus help
each other reciprocally in a sort of spiral which enables complexity to increase during the course of evolution.
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allow information to be passed from one individual to another with minimum risk of mixing
up sounds and not understanding, and thus maximizing communicative capacity.

This type of explanation can contain arguments that are correct and essential, while
nevertheless remaining insufficiently complete to be satisfactory. These arguments belong,
even where this is not acknowledged, to a classical neo-Darwinian vision which makes the
simplification set out above of the relation between genotypic and phenotypic space: they
say nothing about the way in which natural selection was able to find such a solution. Now
according to the view presented in the preceding paragraphs, it is actually this aspect which
can be crucial to understanding the origin of a shape or trait. We might imagine a team of
Martian researchers landing on earth and asking how humans came to cross the oceans with
airplanes. An initial response, which would be that of classical neo-Darwinism, might be:
“Because that is the fastest and most effective way of crossing the oceans”. This response
is accurate, even necessary, but incomplete and unsatisfactory. The neo-Darwinian Martian
might add: “and airplanes have structures which were discovered by a cultural transposition
of natural selection; For a long time humans tried out many structures, first at random,
and then kept the best and made small random variations, replacing a bolt here with a
bolt there, which they then selected, and so on, until they hit upon working aircraft.”.
This would plainly fall a long way short of a satisfactory understanding of the cultural and
nonlinear history of the invention of airplanes. Maybe this explanation is somewhat valid as
an explanation of how engineers today adjust the exact shapes of wings to increase speed or
reduce fuel consumption (by the method of trial and error and hill-climbing with simulation
programs), but it is far from revealing the aeronautical revolution between the end of the
19th century and the beginning of the 20th3.

So it seems that an explanation for the origin of numerous forms in biology requires much
more than simply establishing that they enhance the reproduction of the organisms that have
them. One needs to identify how the form was generated, and in particular to understand
the structure of the relationship between genotypic space and phenotypic space constraining
the operation of natural selection. This requires understanding how the structure is formed
at the ontogenetic scale of individual development to try to identify the bases from which it
could self-organize. In practice, this means looking for structures in the organism itself and
in its physical and social environment that are considerably simpler than those that one is
trying to explain, and showing how their interactions could give rise to the global structure.
The formation of a certain number of macroscopic patterns on the skins of animals, like
the stripes of the zebra or the regular round patches of the leopard, can be explained as
the almost inevitable attractor outcomes of microscopic molecular interactions between the
chemical components present in their epidermis, analogously to hexagonal Rayleigh-Bénard
cells, as shown by Turing in the 1950s (Turing, 1952; Ball, 2001). In this way the problem
of the origins of these patterns is considerably clarified: evolution did not have to search
through all the mathematically imaginable patterns, coding them particle by particle, but
only had to find how to produce some chemical molecules whose interaction contrives to
make stripes (and it seems that the combinations of chemical elements, just as the numbers
of patterns that they can produce on the skins of zebras, for example, is effectively very
limited, see Ball, 2001).

Next, it is necessary to understand how variation in the genomes of organisms, and so
in the parameters of the organisms seen as dynamic systems, causes changes in form, and

3Moreover a parallel is found here on the cultural level between gradual and abrupt changes in shapes
and structures during the course of evolution, due precisely to the nonlinearity of self-organizing phenomena
which work in tandem with natural (or cultural) selection.
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in particular at what speed and of what type. D’Arcy Thompson was one of the pioneers
of this work, fundamental to understanding the origin of the forms of living organisms. His
seminal book, On Growth and Form (1917), is probably one of the most important in the
history of biology, standing beside those of Darwin. In particular, he studied the impact
of parameters in the growth of structures like the shells of molluscs. These are built by
self-organizing processes of cellular division, whose parameters are speed and orientation.
D’Arcy Thompson showed how with a constant mechanism, the simple numerical variation
of these parameters, which from a modern point of view we can easily imagine to be fairly
directly controlled by the genes, can lead to surprising nonlinear and very diverse variations
in the generated forms. Figure 3.6 gives some examples of these kinds of parameterized
variations of forms in molluscs. He repeated this work for many animal species, and in
particular with fishes, where he shows the same phenomenon: figure 3.7 shows the variety
of forms which can be obtained with a constant growth mechanism simply by varying the
parameters of speed and orientation. These studies considerably clarify the way in which
the space of phenotypic forms can be searched and constrained, thus facilitating the natural
selection of efficient, complex forms.

D’Arcy Thompson has another example which illustrates very well how self-organizational
phenomena can facilitate the discovery and natural selection of efficient, complex structures
by natural selection. This is the case of the hexagonal cells formed on the walls of bee-
hives®. This form of cell is remarkable because the hexagonal shape is optimal: hexagons
use less wax than any other possible shape to cover the same surface area. There are two
ways of accounting for this form. The first takes a classical neo-Darwinian point of view and
considers no mechanism other than classical natural selection. The bees would have tried
out a whole range of possible shapes, starting with random shapes and selecting those whose
construction used up less energy, varying them little by little, and selecting again, and so
on, until finally coming across the hexagonal shape. This amounts really to a search for a
needle in a haystack, taking into account on the one hand the huge number of possible cell-
shapes, and on the other that this view presupposes identity between the genotypic space
and the space of cell-shapes; in other words the search is unconstrained. Fortunately for
the bees, their search is helped by a providential phenomenon of self-organization. D’Arcy
Thompson noted that if the cells are taken to be of roughly the same size and of a relatively
smooth shape, and if the temperature generated by the bees makes the wax walls flexible
enough, then cells packed close next to each other will behave more or less like drops of
water in the same situation if surrounded by a viscous fluid. Now, the laws of physics work
so that each water-drop in such an assembly of drops will take on a hexagonal shape, as
shown in Figure 3.8. So the bees don’t need to work out how to design a regular hexagonal
tesselated pattern, which would require abilities worthy of a young mathematician armed
with compasses and rulers, but, much more simply, they have to work out how to make
cells which are roughly the same size and not too twisted, packed up close to each other.
Physics does the rest. And thus, in explaining the origin of hexagonal shapes of wax cells

40f course, in his time D’Arcy Thompson did not describe this example in the same way as we do, because
the concepts of self-organization and dynamic systems had not yet been invented. Nevertheless, a reading of
“On Growth and Form”, which describes many mechanisms that we could now call “self-organizing”, without
having been conceived as such at the time of writing, suggests that his intuition was moving in the direction
in which we interpret his work here.

5] take the position in this book that structures built in one way or another by organisms, like the wax
walls made by bees, are themselves aspects of the characteristic form of the organisms. This point of view
corresponds to the idea put forward by Dawkins in “The Extended Phenotype”. In the same way, the speech
code will be considered as belonging to the characteristic form of humans.
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Figure 3.6: D’Arcy Thompson showed that with a constant growth mechanism, simple numerical
changes in the parameters of cell division, such as speed and orientation, can result in the generation
of very diverse forms in molluscs, corresponding to different species.

in beehives, the role of self-organization of physical structure is just as important as the
metabolic advantage that this structure confers on the beesS.

6This does not mean that nowadays honeybees do not have a precise innate hard-wired neural structure
which allows them to build precisely hexagonal shapes, as has been suggested in further studies such as
those of von Frisch (von Frisch, 1974). The argument of D’Arcy Thompson nevertheless shows how the self-
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Fig. 150. Polyprion. ’ Fig. 151. Pseudopriacanthus altus.

Figure 3.7: D’Arcy Thompson extended his work on molluscs to all kinds of living species, such
as fish for example.

organization of heated packed wax cells could initially have helped the bees to ’find’ these optimal hexagonal
forms. Later on, evolutionary mechanisms such as the Baldwin effect (Baldwin, 1896) might have resulted
in schemata being incorporated in the genome for building the hexagons directly.
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Figure 3.8: The figure on the left shows the regular hexagonal tesselation in the walls built by
bees in their hives. The right-hand figure shows the shape taken by drops of water when they
are packed together: it is exactly the same shape as seen in the walls of beehives. (Photos: Scott
Camazine, Pennsylvania State University (left); B.R. Miller (right)).

3.2.5 Collateral effects

We have just seen that sometimes the explanation of a shape or a trait in an organism re-
quires much more than establishing its usefulness in promoting successful reproduction. In-
deed, it can even happen that such usefulness is not even directly involved in an explanation
of the origin of a form. This is again possible because of the existence of self-organization.
The interaction of several structures appearing in an organism for Darwinian reasons (each
structure helping to replicate its genes more effectively), can lead to the self-organizing for-
mation of a new structure which may have no usefulness at all for the organism. One of
the most striking examples is that of zebra-like or leopard-like striped or spotted patterns
in certain species of molluscs (Ball, 2001, pp. 89, and see Figure 3.9). Although one can
easily imagine a function for these patterns in zebras and leopards (camouflage), it is hard
to imagine one for these molluscs because they live buried under the sand in the depths of
the oceans where no light penetrates, and where their visual patterns are not perceived by
any living creatures. These patterns are formed by growth processes in the shells. They
correspond to the pigmentation produced during the continuous gradual calcification of the
cells at the edges as the shell grows by a process of cell division with a dynamic very sim-
ilar to that of Turing’s model (Turing, 1952) and to the well-known Beloutzov-Zabotinsky
reaction, a classic example of a self-organization phenomenon (Ball, 2001).

3.2.6 Architectural constraints

In fact, we need not appeal to self-organization to give evidence of forms whose origin is not
directly linked to the advantage they provide for the reproduction of the organism. Some
structures can be side effects of the formation of other structures which themselves are useful
in the reproduction of the organism. These side effects arise from architectural constraints,
a topic developed in depth by Stephen Jay Gould (Gould, 2006). We will use a technological
example to illustrate the concepts of side effect and architectural constraint. The operation
of electric light bulbs, whose purpose is to provide light, has traditionally involved passing a
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Figure 3.9: Certain species of mollusc living in darkness at the bottom of the ocean have striped
patterns on their shells. These patterns result from the pigmentation produced during the contin-
uous gradual calcification of cells at the edges of shells as these grow by a process of cell division
with a dynamic very similar to that of the well-known Beloutzov-Zabotinsky reaction. These self-
organized forms have no adaptive value for the molluscs (Photo: Hans MeinHardt).

current through a metal wire. Now this has a systematic consequence which can sometimes
be inconvenient for users of the light bulb: heat is emitted. The generation of heat was
consequently for many years one of the characteristic traits of electric light bulbs. It is
the same with oil lamps. LED-based technology has recently allowed this production of
heat to be reduced, but not entirely removed. Human engineering cannot make lamps for
everyday use that do not also produce heat. Likewise, it is highly probable that evolutionary
engineering is sometimes obliged to tolerate the cost of inconvenient side effects for the
benefit of other useful structures from which they result. Gould gives the example of the
tibial sesamoid bone (part of the tibia) of the panda which tends to hinder its walking,
but results from a growth regime which allows the radial sesamoid (its equivalent on the
forelimb) to serve as an opposing thumb for handling bamboo shoots (Gould, 1982). In fact
the coupling of the growth of these two bones has brought it about that the adaptation of
the radial bone on the forelimb for grasping has also produced a morphological change in
the tibia. The first change is positive for the panda, while the second is an inconvenient
side effect (but which is worth the cost because this arrangement has been selected).

3.2.7 Exaptation

It is clear that any explanation of such “collateral” structures also calls for a precise expla-
nation of why they are the consequences of the formation of other structures which must be
identified, and whose origin must in turn be explained. These examples of collateral effects
are mostly useful for avoiding getting trapped when trying to explain certain characteristics
of organisms. In fact, for the sake of simplification, science will frequently isolate particu-
lar traits which are highly characteristic of an organism and then explain them afterwards.
Herein lies a risk: that of looking for a utilitarian reason for the existence a trait where there
is none, other than in relation to the organism in its entirety. This structure or trait that
one is seeking to explain may be a collateral effect of another structure that one has not
considered. It is especially important to be aware of this risk where the structure concerned
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has a useful function for the organism in the eyes of the scientist studying it, but where the
function is in fact more recent than the structure. This is the phenomenon of exaptation
(Gould and Vrba, 1982): some property N was taken from an earlier state (hence “ex”) to be
used (hence “apt”) in a new role. To illustrate the situation, we will use the example of very
long suspension bridges. Imagine that Martian scientists come across one of these. They
notice that the pillars of the bridge are extremely high. Why so high? They also see that
each pillar carries a collection of antennae, serving as radio relays for telecommunications.
They conclude that this must be the reason for the height of the pillars: they enable the
relaying of radio waves over long distances. In this they are of course completely mistaken:
the pillars were built without anyone knowing that they would be used to house radio an-
tennae. They are very high simply because it was desired to minimize the number of pillars
along the bridge. Besides, in order for each pillar to be able to support the immense weight
of the long roadways, the cables supporting this horizontal part need great strength as well
as great resistance. And the closer they are to the vertical, the more effectively they support
the roadway. And the higher the pillars, the closer to the vertical are the cables. This is a
pure example of an architectural constraint. So the Martian scientist’s error comes from his
isolating the pillar from the rest of the structure, and from the pillars having, by chance,
found a supplementary use after their construction. In biology, Gould and Vrba give the
example of birds which initially evolved feathers for regulating their body temperature, and
recruited them later for flight (Gould and Vrba, 1982). They also give the example of certain
species of snail which have a space inside their shell in which they “hatch” their eggs. There
are also species of snail which have this space but do not use it, and these latter species
appeared in evolution before those which use the space. This space is in fact a result of the
process of construction of the shell complying with architectural constraints similar to those
which require the pillars of suspension bridges to be very high. This space in the snails’
shells is an architectural side effect with no particular function initially, that was only later
on recruited for use as a shelter for eggs.

3.3 Towards a systemic understanding of the origins of
speech

It has been shown in the previous sections that the genesis of a form is a complex process,
which could involve several causal factors. This means that in seeking an explanation for
the origin of a living form it is necessary to provide several types of answers, representing
complementary visions of the same phenomenon from different points of view.

A first type of answer concerns the utility of a form, structure or trait in terms of the
reproductive effectiveness of the organisms which possess it. This is classical neo-Darwinian
argumentation, and is often fundamental to an evolutionary explanation. It sometimes takes
a short cut by replacing reproductive effectiveness with survival value, or often even with
usefulness for some given function. In addition to the dangers of this type of explanation
set out above, this kind of short cut, which can be useful, can also sometimes be dangerous,
because, as (Dawkins, 1982) has shown, what counts in the mechanism of natural selection
is reproductive or replicative effectiveness: it does not always follow that a trait enabling
individual organisms to survive better enables them to to reproduce better (and moreover
some organisms “commit suicide” in order to perpetuate their genes, like certain species of
insect which die to provide food for their offspring, see Dawkins, 1982). Another example
concerns communication, and more particularly the sharing of information, which in certain
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ecological conditions can adversely affect the reproductive capacity of an organism as has
been shown by Gintis and his colleagues (Gintis et al., 2001), and has been studied by
Dessalles (Dessalles, 2007).

A purely neo-Darwinian argumentation will often conclude its explanation by proposing
that the optimal form was formed by the action of the optimization mechanism constituted
by natural selection, without providing any more detail regarding this process of formation.
However, we have seen that natural selection is not a complete mechanism in the sense
that it does not specify the way in which individuals are formed or, above all, the way in
which variation arises. Also, if this form of explanation is filled out with a “naive” version
of the search of phenotypic space of the kind that neo-Darwinism often puts forward, then
it is of limited power and many of the evolutionary problems it is meant to address start
to resemble the search for a needle in a haystack. This is why a second type of answer
is needed to back up the original answer in terms of utility and optimization: this second
answer should explain how natural selection was able to find the solution, and in particular
how it was able to be guided by the self-organization of the systems on which it operates,
and by architectural constraints on the structures which it builds.

In practice, this second kind of answer can consist in identifying simpler structures than
those which one is trying to explain, corresponding to a phenotypic space which is easier for
natural selection to explore, and whose self-organizing dynamic generates spontaneously,
during the development of the individual, the global structure in that we are seeking to
explain. For example, if one tries to explain the hexagonal shape of cells in beehives, the
first type of answer consists in explaining that hexagons are the shapes that require least
energy on the part of the bees (optimality), while the second type of answer consists in
explaining that these hexagonal shapes appear spontaneously once the bees pack together
cells which are not too twisted in shape and of roughly the same size, and warm them.
Thus the space of shapes explored by the bees is significantly simplified, and the chance of
happening upon a genome leading to the construction of such cells is much greater.

It is exactly this second type of argumentation that provides the drive for this book.
We will show that speech codes and their complex properties as described in the previous
chapter can be generated by self-organization starting from developmental and interactional
structures that are much simpler. In particular, these structures that are simpler, but whose
dynamic and systemic interactions are crucial, will therefore constitute the assumptions
behind the models presented here and their role will be twofold. First, it will be evident
that their complexity, of a completely different order from that of the speech code, makes
their discovery and natural selection much more understandable than if one starts from a
classical explanation that ascribes the origin of speech solely to the advantage that speech
conveys to the function of linguistic communication. Secondly, the generic character of these
structures will enable us to explain in Chapter 9 how they could have appeared while having
no causal relation with the use of language: in particular, we will propose that they might
be collateral effects of other mechanisms whose function is not directly linked to language,
such as imitation or mechanisms for spontaneous exploration of the body through curiosity
and intrinsic motivations. In short, this will enable me to suggest that the speech codes that
we use nowadays could be exaptations, whose first versions could have been the outcome
of the self-organization of structures whose origin and functions were distinct from those of
language.

Before presenting this line of reasoning and the computer-based experimentation that
underlies it, in the next chapter we will provide an overview of the different theories proposed
in the literature in response to the questions about the origin of human speech that were
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posed in Chapter 2. We will interpret them within the general theoretical context of the
origin of life forms that this chapter has just presented.



Chapter 4

Theories of how human speech
originated

Some of the questions described in Chapter 2 regarding the origins of human speech are
at the heart of much scientific research. Different approaches have been proposed, coming
from various scientific cultures, and each with its own methodology. This chapter presents
an overview of the most representative theoretical and experimental approaches. We will
also see that a number of fundamental questions remain largely unexplored.

4.1 Reductionism and nativism

One major approach to this question by the scientific community can be qualified as “re-
ductionist”. It tries to reduce the properties of speech to some of its parts. This approach
consists in trying to find physiological or neural structures whose characteristics suffice to
deduce from them the characteristics of speech.

“Cognitive nativism”, which has been argued for by, among others, Pinker and Bloom
(Pinker and Bloom, 1990) holds that the brain has a specific neural disposition for language,
and in particular for speech (the “Language Acquisition Device”), which knows at birth the
properties of systems of speech sounds. This knowledge, according to cognitive nativists,
must be pre-programmed in the genome. A limitation of this approach is that its proponents
have remained rather imprecise on what exactly it means for a brain or an individual to
know innately the properties of speech. In other words, this is a hypothesis that has not been
naturalized, which is to say that the link to biological matter, the issue of its implementation,
has not been addressed in any meaningful way.

Other researchers defend an approach that could be called morpho-perceptual nativism.
They focus their attention on the physics of the vocal tract and on the electromechanical
properties of the cochlea. This approach holds that the sound categories appearing in human
languages reflect nonlinearities of the system that maps sounds and percepts to articulatory
trajectories. Two theories propose different ways of exploiting these nonlinearities.

First, there is the quantal theory of speech, proposed by Stevens (Stevens, 1972). Stevens
observes that there are certain articulatory configurations for which small changes produce
small acoustic changes, and other articulatory configurations for which small changes pro-
duce large acoustic changes. The phonemes used by languages are, then, located in zones

45
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of stability, and unstable zones are avoided.

Then there is the “Distinctive Region Model” developed by Carré and Mrayati. This
approach, which uses arguments from information theory (Shannon, 1948), proposes on
the contrary that speech prefers to use zones in articulatory space for which small changes
produce large acoustic modifications. Both Stevens and Carré carried out simulations with
models of the vocal tract and made rather good predictions on possible places of articulation,
even though their theories are based on assumptions that to some extent contradict each
other.

Even though it is quite clear that the properties of the articulatory and auditory appa-
ratus influence the form of speech sounds, any approach based purely on morphology and
perception will have its limitations. For a start, strong and obvious nonlinearities are not
found in all regions of articulatory space, especially where the production of vowels is con-
cerned. Moreover, as we saw in Chapter 2, a certain number of perceptual nonlinearities are
completely cultural and not perceptible to speakers of other languages: Japanese speakers
cannot hear the difference between the “1” of “lead” and the “r” of “read” in English. There-
fore such nonlinearities do not explain the great diversity of sounds across human languages
(Maddieson, 1984), and are of no help in understanding how a given language “chooses” its
phonemes.

The theories of Stevens, Carré and their colleagues attack the question of why there is
such-and-such a phoneme rather than some other, but do not get to grips with the more
basic questions of why there are phonemes at all and how a system of phonemes can become
the norm within a population. In short, they do not deal with the fundamental problem of
phonemic coding (discreteness and combinatoriality). Among reductionist approaches, that
of Studdert-Kennedy and Goldstein (Studdert-Kennedy and Goldstein, 2002) addresses one
aspect of this question. This is the organization of utterances into parallel independent
gestural tracks, making possible the delivery of information fast enough for humans to
convey complex messages effectively (Studdert-Kennedy, 2005). They note that the vocal
tract is composed of independent articulatory organs, such as the tongue, the lips and the
velum. This implies on the one hand that there is a discrete aspect to the physiology of
speech, and on the other hand, since there is only a small number of such organs, that there
is a systematic re-use in complex utterances, at least from the point of view of which organs
move. Studdert-Kennedy is undoubtedly right on this point. However, other aspects of
phonemic coding, and in particular discreteness, remain to be explained. In fact, as they have
noted elsewhere (Studdert-Kennedy and Goldstein, 2002), each organ or set of organs can
be used to make a constriction in the continuous space of places and manners of articulation.
How is this space discretized? Goldstein has proposed an answer to this question that is not
reductionist, but a mixture of self-organization and functionalism (Goldstein, 2003), and
that will be examined later in this chapter. In the following chapters we will also propose
a solution to this second aspect of phonemic coding, although it will not be covering what
might be called the “organization of vocalizations into independent gestural tracks”.

Generally speaking, these reductionist approaches study the universal properties of
speech, and in particular phonemic coding and the common features in phoneme inven-
tories in the languages of the world. They do not deal with the diversity of speech sounds,
nor the cultural formation of specific systems shared by language communities. A fortiori,
they propose no solution to the problem of the formation of the first conventional codes at
a time when they did not already exist. Such was not, however, their goal.

Besides, more generally, this kind of research does not really attempt to explain the
origin of the speech code, but rather attempts to discover some it its physiological, morpho-
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logical and neural correlates. Consequently, it does not really address the problem of causal
explanation, but rather approaches language from the perspective of a natural historian by
grounding the speech code in its biological substance. Nevertheless, when it is reviewed in
the theoretical framework presented in the previous chapter, this kind of grounding enables
us to clarify the problem, precisely by “naturalizing” it. Studdert-Kennedy, for example,
points out an essential biological aspect of the combinatoriality of the contemporary speech
code, namely the independent control of the different organs which can modify the shape
of the vocal tract. This allows him to formulate a hypothesis according to which this in-
dependent control is a result of co-opting the control structures of the facial muscles, in
the functional context of imitation (Studdert-Kennedy, 1998), involving a transfer of infor-
mation from the visual to the auditory modality. We will not pursue this theory since it
concerns an aspect of phonemic coding which will not be dealt with in this study, namely
the organization of utterances into independent gestural tracks.!

4.2 Functionalism: the speech code is optimized for com-
munication

The functionalist approach tries to explain the properties of speech sounds by relating them
to their function. It uses the cover-all notion of function, which is why it is here referred as
“functionalist”, although it could also be qualified as a classical neo-Darwinian approach.

The function of the speech code which is typically invoked to explain its form (and
implicitly its formation according to a naive version of natural selection) is “communication”.
The speech code provides a repertoire of forms which should be as efficient as possible, in
order for the individuals who use it to understand each other. This efficiency is evaluated
by many criteria. The criterion which is always appealed to is perceptual distinctiveness.
That is to say that sounds should be distinct enough from each other for them not to be
confused and for communication to take place. The other criteria are often tied to the
costs of production, like the energy needed to articulate sounds, or perceptual salience.
A repertoire of sounds is thus a set of forms which is quasi-optimal for communication
and simultaneously minimizes the costs in terms of energy. This approach differs from the
reductionism of the previous section because, instead of looking at phonemes individually, it
considers the system they belong to, studied as a whole according to its structural properties.
Also, it is truly in the business of explaining the origin of the modern speech code, giving
answers in terms of “optimality”.

Some researchers have produced precise models of this idea and have explored the con-
sequences with the aid of computer simulations. Lindblém and Liljencrants were pioneers
(Liljencrants and Lindblém, 1972; Lindblém, 1992). Their model concerns the prediction
of vowel systems in human languages. Given a number n of vowels, they define the energy
in a system of n vowels by E, =3 71" (>0 i, 1/r7; where ; ; is the perceptual distance
between two vowels. Each vowel in this simulation is a point in a space defined by the
first two formants®. The possible points are articulatorily confined to a triangle, the vowel
triangle (see Chapter 7). This energy is used to measure the perceptual distinctiveness of
the whole system. If the vowels are very similar to each other, then the r; ; are small and

1As far as phonemic coding in general is concerned, Studdert-Kennedy’s theory is compatible with and
complementary to the theory that we will put forward in this study; that is, the one theory does not rely
on the other, and one fills out the other in explaining the origin of phonemic coding.

2Formants are the frequencies where there is a peak in the energy spectrum.



48 CHAPTER 4. THEORIES OF HOW HUMAN SPEECH ORIGINATED

the energy is high. If they are distant from each other, the energy is low. Using numerical
optimization techniques enabled to see which were the vowel systems which had least energy,
that is, were minimal. This lead a certain number of resemblances with the most frequent
vowel systems of human languages, as far as the systems with fewer than six vowels were
concerned. The predictions of the model were then improved by adding a term modelling
the articulatory cost.

However, Lindblom’s results were not very life-like for systems with more than six vowels,
and gave a large number of high peripheral vowels between [i] and [u], compared to the
languages of the world. A second model, incorporating a new criterion, perceptual salience,
was then developed within the framework of the Dispersion-Focalization Theory of Schwartz,
Boé, Vallée and Abry (Schwartz et al., 1997). This perceptual salience characterizes the
relative nearness of the formants of vowels: the nearer they are, the more the energy in one
region of the spectrum is reinforced, thus giving the vowel a focal quality. The authors of
this theory propose that this property is registered by the brain. This makes it possible to
improve on Lindblém’s predictions.

This research method was taken up by Redford, Chen and Miikkulainen (Redford et
al., 2001) working on syllable structure. Given a repertoire of phonemes, they looked to
see which were the syllable systems, sequences of these phonemes, which represented the
best compromise between such criteria as minimization of word-length in the lexicon, min-
imization of number of syllable types in the repertoire, perceptual distinctiveness between
adjacent phonemes, and maximization of the difference in jaw opening between adjacent
phonemes. They were then able to predict some phonotactic regularities in the world’s lan-
guages, like the preference for syllables of type CV (Consonant-Vowel) over syllables with
consonant clusters, or the iterative principle of syllable construction (simple syllables are
more frequent than complex syllables in the same repertoire, in an organized distribution).

These works, which tried to explain certain properties of the speech code in terms of their
quasi-optimality for communication, have led to significant scientific progress. However, they
should not lead us to forget that there are traps such as those described in the previous
chapter. For a start, the definition of such optimality is far from clear, as is shown by the
different criteria used by different authors: evaluation of perceptual distinctiveness depends
on ones model of speech perception; some works take energy costs into account, but our
knowledge of the speech production system is scant, so that these costs are inevitably
modelled very crudely; other works add psychological constraints, such as a preference for
salient sounds, that is a preference for sounds whose formants are sufficiently separated from
each other. Not only is our knowledge of these different criteria very rough, but it is also hard
to know how to weight them in relation to each other. For this reason, while it is interesting
to show that one can devise definitions of criteria and combinations of criteria that yield
qualitative predictions about the form of the speech code, the quantitative predictions must
be treated with greater caution. Moreover, we have seen in the previous chapter that forms
could sometimes be explained without necessary recourse to their utility in a given function.
It will be shown in the following chapters that this can be the case for certain properties of
phoneme inventories: the models we will discuss enable us to predict the same properties of
vowel systems as those predicted by Lindblém, even though no measure of cost or optimality
for communication will be used to guide the evolution of the system.
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4.3 Synthetic and systemic approach: computer and robotic
models

As argued in the previous chapter, any functionalist explanation of the type given by Lind-
bléom or by Schwartz and his colleagues should be accompanied by an explanation of the
mechanisms of morphogenesis of the optimal solution for communication, embodied in the
speech code. In fact, while Lindblém’s models show that the most frequent phoneme sys-
tems of human languages can be predicted on the basis of optimizing a certain number of
criteria, they do not explain how this optimization could have taken place in practice in
the biological, cognitive and social substrate. Furthermore, as with reductionist theories, he
does not undertake to explain how a community of speakers can come to share a particular
sound system.

4.3.1 Models of the formation of languages

Accordingly, a new approach, based on the use of computer models and robotics, started to
be explored around the middle of the 1990s, to look at the question of the morphogenesis
of languages and of language in general. Luc Steels, one the pioneers of this new approach,
talks about ‘synthetic methodology” (Steels, 1997; Steels, 2001). This consists, in practice,
of creating computer models of groups of artificial individuals, sometimes in the form of
robots, equipped with perceptual, motor and cognitive models that enable them to learn
during the course of their interactions with one another.

For example, Luc Steels and his colleagues have developed the “naming game” model,
in which a group of artificial individuals progressively negotiate a lexicon, that is to say
the choice of associations between words and semantic representations (Steels, 1997;2012;
2016). At the outset each individual has a repertoire of semantic representations, but no
words to designate them. During the course of interactions they create associations between
words and meanings, which are marked with a score enabling the force of these associations
to be evaluated and those that are too weak to be eliminated. Agents interact in pairs
in a random order. During an interaction, one of the two chooses a referent within the
environment (corresponding to a semantic representation), and pronounces the word that
has the strongest association with it in its memory (if no associated word is present, an
arbitrary symbol is generated). The other individual observes this association, increases the
corresponding score in its memory and decreases the score of all other associations containing
either this word or this meaning. A competition between word-meaning associations thus
takes place among the population of individuals, with a dynamic that we might call cultural
Darwinism (Kaplan, 2001; Oudeyer and Kaplan, 2007). In this competition the mechanism
that bolsters the scores of the most frequently used associations and eliminates the weaker
ones gives rise to a positive feedback loop: in a systematic fashion the repertoires of word-
meaning associations self-organize, and the group converges towards a repertoire that is
shared by all individuals and that allows them to communicate without ambiguity. A
conventionalized lexicon has thus appeared spontaneously during the course of the pairwise
interactions of individuals, without any norm having been imposed or pre-programmed.
Different groups of individuals will moreover converge towards different conventions, which
suggests an explanation for the diversity to be found among languages.

The “naming game” computer model has thus had a major role in showing how simple,
local mechanisms of linguistic interactions could allow the formation of linguistic conventions
at the global level of a society of individuals. Prior to the development of this kind of model,
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no explanation existed for what kind of mechanism could drive the formation of language.
Such models subsequently gave rise to detailed mathematical analysis, based in particular
on the use of theoretical tools in statistical physics (Baronchelli, Loreto and Steels, 2008).
At the same time, many other computer models came along to extend the naming game for
modeling a variety of more complex phenomena in the evolution of languages.

Some models have focused on the origin of semantic categories linked to the words of
a given language. Systems of semantic categories of human languages, that is to say on-
tologies, can differ widely from one culture to another, and are therefore to some extent
cultural structures (Hagege, 2006). For example, the conceptualization of colours, of time
and of space can vary according the linguistic environment (Levinson, 2003). Some lan-
guages make no distinction between blue and green, while others such as Guugu Yimithirr
(Gumperz and Levinson, 1996) do not encode spatial concepts that are relative (“in front
of”, “behind”, “opposite”) and only conceptualize the position of objects in relation to an
absolute framework (“north of”, “east of”, etc).

How then can a group of individuals agree on the use of one ontology rather than
another? How can a system of categories be built collectively by these individuals? The
“guessing game” model shows how this is possible (Steels, 2003; Steels, 2012). In this
model, robots that have the ability to perceive their environment visually are endowed
with mechanisms for creating concepts in the form of mathematical equations that are
then used for identifying referents in their context and that can be associated with words
as in the “naming game”. At the start, individuals possess neither words nor concepts.
Repertoires grow out of interactions with other individuals and from the mechanisms for
creating new concepts when they are required. For example, if they do not currently possess
a concept enabling them to identify the referent to which their attention is drawn during
an interaction, and within a given context, then they will generate a new mathematical
equation that can do so. Now, each time this happens there will be a large number of
conceptual representations (equations) that would be suitable, and so one is chosen at
random. A competition resembling that of the naming game thus takes place between
concepts, words and associations. Those that are used the most frequently in interactions
where communication is successful are strengthened, while others are eliminated. After a
certain time a complete lexical system, shared by all the individuals in a group, is formed,
consisting of the same words, the same concepts and the same associations. This system
is different for each group. For example, in the “Talking Heads” experiment, one of the
most comprehensive scientific experiments ever performed to model language evolution, a
population of robots was able to evolve over a period of several months, corresponding to
tens of millions of interactions between dozens of individuals, and converging towards a
lexical system of several hundred words and concepts. Interestingly, the concepts that were
formed were adapted to the properties of the robots’ perceptual environment: a world of
simple shapes and different colours laid out on a white background (see Figure 4.1). In this
way, rather “sophisticated” concepts relating to colours (e.g. “light red”, “dark red”) and to
relative positions (e.g. “below”, “to the left”) were formed, while concepts relating to shapes,
which did not vary greatly, remained few in number. The Talking Heads shows how the
physical properties of the external world, in interaction with cognitive bias, can influence the
semantic categories that are formed, while their diversity tends to be the result of historical
contingencies and of arbitrariness in the process of social interaction.

Using a similar approach and similar methods, other models have been developed to
study how syntactic structures are formed and become more complex (Kirby and Hurford,
2002; Christiansen and Chater, 2016), how grammatical structures and categories evolve
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Figure 4.1: The Talking Heads experiment, designed by Luc Steels et his team at the Sony
Computer Science Laboratory (Steels, 1999, 2003). A population of robots interacts to create and
progressively negotiate a system consisting of its own particular semantic concepts, words and word-
meaning associations that enables individuals to communicate effectively within their environment.

(Steels, 2012), and how diversity comes about and is linked to social structures (Coupé,
2003). There are models that have focused on the formation of specific semantic cat-
egories concerning, for example, space (Spranger and Steels, 2012), time (Dessalles and
Ghadakpour, 2004), and perspective (Steels and Loetzsch, 2008).

4.3.2 Models of the morphogenesis of systems of vocalizations

The computer and robotic models of the formation of languages described in the previous
section all presuppose that from the outset individuals share the same system of symbolic
forms for building words. Thus, in practice, the “words” used in these models are composed
of phonetic symbols that are already common to a whole group. Another family of models,
using the same methodology, address the formation of systems of vocalizations among groups
of individuals, that is to say the origin of phonological systems.

Origin of vowel systems

A pioneering model was developed by Berrah, Glotin, Laboissiére, Bessiére and Boé in 1996
(Berrah et al., 1996; Berrah and Laboissiére, 1999), in which a population of artificial indi-
viduals generated a system of vowels over a number of pairwise interactions. Each individual
started out with a repertoire of a few arbitrary vowels. During an interaction between two
individuals, a vowel possessed by one of the two was selected at random. Following this
the nearest vowel in the repertoire of the other individual was tweaked to bring it closer
to the selected vowel, and the other vowels made to be further away, thus simulating a lin-
guistic communication pressure. In parallel, a mechanism evaluating a compromise between
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perceptual distinctiveness and articulatory cost selected the best adapted individuals in a
generational evolution model. In these simulations, using a mechanism similar to those of
statistical physics, individuals converged after a certain time towards a shared system of
vowels.

De Boer subsequently presented a related model that he used to study in detail the
properties of vowel systems as they are formed (de Boer, 2001). In this simulation, which
used artificial individuals, the same mechanism explains both the acquisition of vowels and
their emergence: this mechanism is imitation. Thus, he undertakes in addition to answer
the question: “How are vowel systems learned?”.

The individuals in de Boer’s simulation interact according to rules of a language game
which is called the imitation game. Each individual has a vowel synthesizer, so that, given a
point in articulatory space (tongue position, height or manner of articulation, lip-rounding)
it can produce a vowel. Vowels are points in a space defined by the first two formants. Each
individual also has a repertoire of prototypes which are associations between a point in
articulatory space and the perceptual representation of the corresponding (acoustic) vowel.
This repertoire is initially empty. It expands either by random invention or in the course of
the learning which takes place during an episode of interaction. In one interactive episode
between two individuals, one of them, the speaker, chooses a vowel from its repertoire
and pronounces it to the other individual, the hearer. The hearer then looks to see which
prototype in its repertoire is closest to what it has just heard, and pronounces it in imitation
of the other individual. Then the speaker categorizes this sound by looking in its own
repertoire to find the closest prototype. If it is the same as it used in its own initial
utterance, it judges the imitation a success and makes this known to the other individual
by telling it that it was good. Otherwise, it tells it that it was bad. Each prototype in a
repertoire has a score which is used to reinforce the vowels leading to successful imitation,
and to eliminate the other vowels. In a case of poor imitation, depending on the score of
the prototype used by the hearer, either this is modified so as to resemble more closely the
sound made by the speaker, or a new sound is created, as close as possible to that of the
speaker.

It can be seen from the description of this game that it requires a certain number of
complex abilities on the part of the individuals. For a start, they have to be able to follow the
conventionalized rules of a game with successive turn-taking and asymmetric roles (speaker
and hearer). Then, they need to be able to voluntarily copy the sound productions of other
individuals, and be able to evaluate such copies. Finally, as speakers, they have to recognize
when someone tries to imitate them intentionally, and give a feedback signal to the hearer to
tell it whether or not it has succeeded. The hearer must be able to understand this feedback,
to understand whether its imitation was successful as seen by the other individual.

The level of complexity necessary for the formation of shared vowel systems in this
model is characteristic of a population of individuals which already have complex ways of
interacting socially, and in particular already have a primitive system of communication
(which enables them to know, for example, who is the speaker and who is the hearer, and
what signal means “imitation succeeded” or “imitation failed”). The imitation game itself is
a conventional system (the rules of the game), and the individuals communicate when they
play it. This in effect necessitates the intentional transfer of information from one individual
to another, and thus requires a system of shared forms making such information transfer
possible. The vowel systems here do not emerge from an entirely non-linguistic situation.
De Boer’s model concerns modelling how sounds are formed and how they change within
a context where there are already some elementary linguistic interactions. This model
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shows how changes in systems of vowels can occur during the cultural history of a group
of individuals. This results from the stochastic nature the model and the properties of the
learning mechanisms in successive generations of individuals.

A generalized mathematical model of the mechanisms addressed in the models of Berrah
et al. and of de Boer has recently been proposed by Moulin-Frier, Schwartz, Diard and
Bessiére (Moulin-Frier et al., 2008; 2015; Moulin-Frier, 2011). This model, expressed in the
framework of Bayesian modelling, allows the essential elements of these mechanisms to be
abstracted and makes explicit the respective roles of the motor and perceptual systems, that
is to say the role of the body. It has also allowed the mechanisms involved in the formation of
systems of sounds to be integrated into complete linguistic interactions, thus linking it to the
“‘naming game” model described above: the artificial individuals in the Moulin-Frier et al.
model negotiate simultaneously a repertoire of sounds and the associations of these sounds
with the external referents about which they communicate. The model has also widened the
works described above to the question of the formation of consonants and to the production
of syllables, by including phenomena of co-articulation. Within a mathematical context, it
can therefore express a variety of different theoretical perspectives on human speech — such
as Liberman and Mattingly’s motor theory (Liberman et Mattingly, 1985), or the perceptual
theory of Diehl and his colleagues (Diehl et al., 2004) — as special cases of a more general
sensorimotor theory. This means that computer experiments can be performed allowing
some combination of these different theoretical perspectives (Moulin-Frier et al., 2012).

However, the models we have just described do not engage with the chicken-and-egg
question of how the first repertoire of shared forms could have appeared in population of
individuals without prior conventionalized modes of linguistic interaction. In particular the
question of why individuals seek to imitate each other in the models of Berrah et al. or
de Boer (where it is programmed in) is left unanswered. The same goes for the origin
of language games such as the deictic games providing the conventionalized protocols of
interaction that are simply presupposed by these two models. Nevertheless, along with
those of Moulin-Frier et al., Kaplan, Steels and Kirby, they represent a crucial step forward
in showing how conventional shared linguistic structures on the scale of a whole population
of individuals can emerge through self-organization starting from local interactions that a
are structured for language communication (that is to say the creation of a system of forms
allowing them to distinguish between external referents). They are a naturalization of the
cultural phenomenon of speech formation and evolution.

Origins of combinatoriality

One very important question about the origins of phonological systems is the question of
combinatoriality. All languages include a repertoire of basic sounds that are used to form
syllables (this is not the case for writing systems, where syllabaries are to be found in which
the graphical symbols representing syllables are holistic and not re-used between different
syllables). In all languages the vocal continuum is discretized: only a few key configurations
are used in any given language, even though the vocal tract is capable of producing a
continuum of sounds. And in all languages these basic sounds are re-used in a systematic
way.

Models have consequently been developed to take into account the syllabic and tempo-
ral dimensions of vocalizations. Moulin-Frier’s model, and also a model that we developed
(Oudeyer, 2001c; Oudeyer, 2005a), feature language games where individuals negotiate sys-
tems of syllables. In the first case the language game is deictic, and in the second case
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it is an imitation game. In the model presented in (Oudeyer, 2005a), individuals play the
same imitation game as in de Boer’s model, but their repertoire consists of syllables. At the
beginning of the simulation, they are given a shared repertoire of phonemes (imagined as
the result of an earlier game, such as one of de Boer’s simulations). The scores of the indi-
viduals’ prototypes no longer depend only on success or failure in imitation, but also on the
energy necessarily taken to produce them. It was possible to predict two regular properties
of syllabic structure in human languages with this model. The first is a preference for CV
syllables, followed by CVC, then CCV and CVV, then V and VC, then CCVC and CCVV,
and finally other syllable types. The Sonority Hierarchy is also predicted by this model:
syllables tend to begin with a phoneme with a high degree of obstruction to airflow, then
to allow the obstruction to diminish to a certain point, and then to increase the obstruction
again up until the final phoneme of the syllable.

This model can also shed some light on the learnability of syllable systems (Oudeyer,
2005a). While individuals have no problem learning a syllable system already constructed by
a similar population of individuals®, this does not happen given a randomly invented syllable
system: if an arbitrary system of syllables is artificially incorporated into the memories of
a population of individuals, any other individual who does not already know will generally
be unable to learn it. This is due to the fact that the individuals’ learning procedures, like
all learning procedures (Duda et al., 2000), are biased, in that they are better adapted to
learning certain families of structures than others (despite the fact that it is a general learning
procedure that can be used for very different tasks, like learning to classify flowers according
to their shape, or chemical substances according to measurements by electronic instruments).
The fact that there are biases implies that certain types of data are easier to learn from than
others. Thus, in this model groups of individuals culturally select syllable systems that they
are capable of learning efficiently. In other words, syllable systems adapt to the ecological
niche provided by the brains and morpho-perceptual organs of these individuals. This
finding, which has also been shown to apply to the learnability of syntax (Zuidema, 2002),
reverses the perspective taken by researchers in the nativist cognitive tradition presented
earlier, who propose a different scenario to explain the fact that children learn a language
and its grammar so easily, and especially the sound patterns, despite the poverty of the
stimulus that they receive (Gold, 1967). The nativist argument points to the impossibility
for a generic learning device with no a priori knowledge of language to learn any arbitrary
language it is presented with. The (logically invalid) conclusion drawn from this is that the
brain must know innately how language is organized, especially in its sound patterns, in
order to be able to learn it. Thus, the brain itself would have adapted to language during
the course of biological evolution in order to be able to learn it (Pinker and Bloom, 1990).
The computer models discussed above suggest another explanation: it is the process itself by
which languages are formed that develops and selects only those languages that individuals
are capable of learning. It is quite possible that languages adapt to the general cognitive
constraints of their speakers, rather than the other way around.

Even though they address the problems of the grammar of sounds, the models of Moulin-
Frier et al. and Oudeyer make certain assumptions about the bases of this grammar: in-
dividuals are endowed from the start with a shared and discrete repertoire of phonemes
(Oudeyer, 2005a), or are constrained to use a small number of phonemes, which is equiva-
lent to programming combinatoriality in at the outset (Moulin-Frier, 2011). They therefore
provide no real explanation of how discreteness and combinatoriality arose in the first place.

3The individual is quite simply made to interact with individuals who already “speak” the syllable system.
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This is a central concern of the models we will present in the following chapters. However,
one might reasonably have imagined that combinatoriality would arise during some of these
simulations, for example in cases where individuals have a wide repertoire of phonemes at
their disposal. Lindblém (Lindblém, 1992), along with Zuidema and de Boer (Zuidema
and de Boer, 2009) suggested that combinatorial systems could be optimal compromises be-
tween perceptual distinctiveness and ease of articulation. Thus, just like the regularities in
vowel systems or the phonotactic regularities emerging from de Boer’s (de Boer, 2001) and
Oudeyer’s (Oudeyer, 2001d) models, one might have expected that among the phonemes put
at the disposition of the individuals, certain phonemes would be chosen and systematically
re-used in constructing syllables. However, this was not observed. A more precise study
into this matter was carried out, varying the numbers of phonemes given to the individuals
as well as the degrees of freedom in their vocal organs (a model of the vocal tract in the
form of an acoustic tube) and their perceptual organs (a model of the cochlea). When the
number of phonemes given to individuals was small in proportion to the number of sylla-
bles that their repertoire could contain, then necessarily they were systematically re-used,
but this is equivalent to pre-programming combinatoriality, and leaves open the question of
where these phonemes, a radical discretization of the articulatory continuum, come from.
When the number of phonemes was increased, for all configurations of the vocal tract and
the perceptual apparatus of any reasonable dimensions, the syllable systems which emerged
(consisting of several hundreds of elements), were never combinatorial. Thus, individuals in
the simulation were able to construct very large shared syllable systems and communicate
efficiently without there being any need for combinatoriality.

Browman and Goldstein (Browman and Goldstein, 2003; Browman and Goldstein, 2000)
proposed a different model addressing the question of the origin of discreteness (they refer
to the emergence of discrete gestures). They constructed a simulation in which two in-
dividuals can each produce two gestures, parameterized along a dimension of constriction
whose values are taken from a one-dimensional continuum (typically, this space is the space
of place of articulation). The individuals interact following the rules of a game called an
“attunement game” (this could be paraphrased as a “game in which each individual adjusts
to the adjustments of the others”). In one episode of the game, the two individuals produce
their two gestures, each one using a value of the parameter taken from the continuum with
a certain probability. At the beginning of the simulation, this probability is the same for all
values: in other words, all values on the continuum are equally usable. Next, each individual
reconstructs the parameter used by the other individual for its first gesture, and compares
it with the parameter which it has used itself. If the two values correspond, within a certain
tolerance interval, then two things happen: the probability of using this value of the param-
eter for the first gesture is increased, and the probability of using the same value for the
second gesture is decreased. This simulates the idea that the two individuals are each trying
to produce their gestures differently (so that they can be differentiated and contrasted), and
at the same time in a way similar to the other individual (so that a shared conventionalized
usage is established). At the end of the simulation the individuals converge on a state where
they use a single value for each of their gestures; thus the space has been discretized, and
the pairs of values of the individuals are the same in each simulation, but different from
one simulation to the next. Browman and Goldstein carried out simulations both using
and not using nonlinearities in the function from sounds to articulatory parameters (this is
implemented by modelling the noise added when an individual reconstructs the parameters
used by the other individual). When nonlinearities were not used, the set of parameters
used across all simulations covers the space uniformly. When nonlinearities were used, then
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certain parameters in regions of stability were statistically preferred.

As in the models described above, here the individuals interact in accordance with a
coordinated structure: they obey the rules of the game. Indeed, every time, they have to
produce their gestures together during one interactional episode. Thus, as in the imitation
game, a pressure to differentiate sounds is built in, as is a pressure to copy the parameters
used by the other individual. This implies a presupposition that the individuals already
live in a community in which a complex communication system exists. However, this was
certainly not among the question that this model sought to address. So it still remains to
be seen how the discreteness of speech, which seems to be crucial for the birth of language
(Studdert-Kennedy and Goldstein, 2002), could have appeared without assuming that a
complex communication system was already in place. More precisely, how could a discrete
speech system have appeared without an explicit pressure to contrast sounds? This is one
of the problems will be examined in the following chapters.

One assumption made in Goldstein’s model is that the individuals directly exchange the
articulatory targets which they use in producing gestures. However, human vocalizations
are continuous trajectories, firstly in acoustic space, and secondly in the articulatory space
of relations between organs. Thus what a human perceives in the vocalization of another
is not articulatory targets which were used to specify gestures, but rather the acoustic
realization of these gestures which is a continuous trajectory between the starting state and
the target. And because several targets are aimed at in sequence, vocalizations do not stop
when one target is reached, but continue on their path toward the next target. To retrieve
the targets from the continuous trajectory is very difficult, and moreover a task which speech
recognition engineers have not conquered. Possibly the human brain is equipped with an
innate capacity to do this, by detecting events in the flux of sounds which correspond to the
targets, but this is strongly speculative.

4.4 Mechanisms that give rise to language

We have seen that operational models developed in the literature show how the cultural
phenomenon of language formation can be naturalized, by demonstrating that languages
can emerge by self-organization out of the decentralized interaction of individuals. The ca-
pacities for interaction and communication possessed by the individuals in these simulations
are already quasi-linguistic, with, for example, the capacity to play language games, conven-
tional interactions which are themselves norms structurally equivalent to primitive linguistic
norms. These capacities are so complex that we are still a long way from understanding
how natural or cultural selection could have formed them.

In the following chapters we will ally with the research tradition that builds artificial
systems to support explanations of the mechanisms of speech morphogenesis. However, the
structures constituting the initial biological baggage of the individuals will be much less
complex?*. In particular, the individuals will not have the capacity to interact in structured
ways, they will not have access at the outset to any conventional norm, and no measures
of optimality or communicative effectiveness will be used to guide the evolution of systems
of vocalizations. In this way, starting from relatively simple mechanisms, the speech codes
which will be generated through self-organization during the interaction of these structures

41t is crucial to note that we are speaking here of ‘evolutionary’ complexity, which is unrelated to the
complexity of the program implementing the artificial system, that depends on the degree of detail one
wishes to model.
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will be characterized by the following properties: discreteness and combinatoriality will be
self-organized; the repertoires of emerging units will be shared by all the individuals in a
group and variable from one group to the next; and the way phonemes are put together will
be organized according to the rules of syntax. In addition, the use of morphological con-
straints will lead us to make the same predictions about vowel systems as those made in the
models described above, but with assumptions that are less complex from an evolutionary
point of view.

These less complex structures which, then, will constitute the assumptions of these
systems, are interesting in two ways:

e First, these structures can be considered within the framework of a classical neo-
Darwinian theory of the origin of language. Within an evolutionary scenario assuming
a pressure for linguistic communication, the models presented in the next chapters will
make it more understandable how natural selection could have arrived at the biological
bases of speech. In effect, we will show how these bases can be relatively simple
by comparison with the speech systems that they generate. We will thus propose
an explanation analogous to D’Arcy Thompson’s explanation for the formation of
hexagonal cells in beehives: the biological structures that natural selection arrives at
for the bees are not those of a mathematician armed with a compass and rules and
exact plans for dividing up the surface regularly, but simpler structures allowing for
cells of roughly similar size, not too misshapen, to be piled together.

e Secondly, the generic nature of these structures will allow us to explain in Chapter 9
how combinatorial systems of speech could have appeared spontaneously as collateral
effects of the evolution of capacities that are more generic and anterior to language,
such as imitation and intrinsic mechanisms that incite an organism to explore its own
body, and in particular its own vocal system, out of pure curiosity (Oudeyer, 2006b;
Oudeyer and Smith, 2016). This will lead us to suggest that the speech codes that we
use nowadays might be exaptations, the first versions of which might have been the
outcome of self-organization of structures whose origin was unconnected to language.

In both cases the modelspresented in the next chapters® will attempt to illuminate the
issue of the origin of the language faculty (rather than the origins of specific languages),
by showing how the evolution of one its fundamental prerequisites, the speech code and its
biological bases, could have been crucially facilitated by phenomena of self-organization.

Before presenting these models in detail, we will focus more broadly on the scientific
justification for an approach which builds artificial, computer-based and robotic systems in
order to better understand how living creatures function.

5These models will also be robotic to the extent that they simulate the physical properties of the vocal
tract and of the ear
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Chapter 5

Epistemology of Artificial Systems
as Research Tools

The mechanisms that could have given rise to language, and in particular to speech, are
necessarily complex and cannot be explained only by theories that are expressed in words.
Theories whose formulation is verbal, as is often the case in the social sciences and sometimes
in the life sciences, remain approximate about their assumptions because they use natural
language. Moreover, their verbal nature makes it impossible to prove that their premises lead
to their conclusions, because these theories necessarily involve complex, dynamic systems
whose behaviour is difficult to predict exactly using intuition alone. Building artificial
systems, whether they be mathematical, or computer or robotic simulations, is a way of
complementing a purely verbal approach and evaluating the logical coherence of a given
theory; it is also a way of generating and formulating new theories. This has been called
“the methodology of the artificial” (Steels, 2001; Pfeifer, Lungarella et Iida, 2007). This
approach, widespread in biology (Langton, 1995; O’Reilly, 2006), has been used more and
more in evolutionary linguistics in recent years, as we saw in the previous chapter (Steels,
2012). We looked at examples of artificial systems showing the formation of shared systems
of vowels, consonants, syllables, lexicons, semantic categories, and syntax. We will now
examine the epistemological foundations of this approach.

5.1 What is the logic of science?

Science has been perceived in a variety of different ways by different thinkers, including
Bachelard, Bernard, Chalmers, Feyerabend, Kuhn and Popper (Bachelard, 1865; Bernard,
1945; Chalmers, 1990; Feyerabend, 1979; Kuhn, 1970; Popper, 1984). We adopt here the
constructivist point of view as propounded by Glaserfeld (Glasersfeld, 2001).

Several different types of activity can be distinguished as belonging to the sciences and
practiced by scientists:

e Performing experiments, observing reality, analyzing data to detect regularities

e Examining existing theories in order to derive predictions about reality from them,
and devising experiments to falsify or confirm a theory.
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e Determining whether what is observed corresponds to what the different theories pre-
dict.

e Examining the internal coherence of theories and the compatibility or incompatibility
between theories; trying to build bridges between different theories.

e Constructing new theories. There are several ways of arriving at a new theory. One
of them is a process of “abduction”, a term invented by Peirce (Peirce, 1931). This
consists, given the state of a system, in figuring out an initial state as well as a
mechanism which could have led to the observed state. It is thus a matter of finding
a set of premises which leads to a certain conclusion. It is in some way the inverse of
‘deduction’ (Peirce, 1931). For example, if one sees a pair of shoes sticking out from
behind some curtains, one can generate the hypothesis that there is someone behind
the curtains. This is abduction. Obviously, the theories and hypotheses generated
could be false: maybe the shoes are empty. Consequently, once a theory has been
formulated, it is necessary that researchers engage in activities 2), 3) and 4) to evaluate
the correspondence between the theory and reality (but a theory can still be useful
even if it corresponds poorly with reality as explained below).

e Very importantly, formulating new questions or reformulating old questions so as to
guide minds towards uncharted aspects of a problem, and sometimes open the way to
surprising discoveries.

In this book we use the logic of abduction to formulate new theories, formulated in
the language of mathematics, computer science and robotics. Computer simulations are
used to evaluate the internal coherence of these new theories, and their predictions can be
tested through comparisons with what is observed in reality. The use of abduction is almost
inevitable, given the problems attacked here. In effect, we discuss a quest for a theory about
the origins of certain aspects of speech; but the state that humans were in when speech arose
has left few traces. In this way, the construction and testing of computer models can be
seen as a novel scientific language in which old questions about speech, along with new ones,
can be formulated, and the multidimensional structure of this complex system adequately
expressed.

We will also be using the term “artificial system” to qualify the models presented in this
book. This is a reminder that the aim of these models is not to mimic reality realistically,
but rather to help us to understand reality with the aid of a functional abstraction of
fundamental mechanisms. Another term we will use to qualify them is “theory”. We believe
that artificial systems are themselves structures of explanation, of a non-verbal kind, which
can be essential for understanding the world. Thus artificial systems, even though they
are often inspired by verbal theories, are not simply formal translations of these theories.
Formal languages, whose properties are different from those of natural languages, are able
to express and make explicit mechanisms that cannot be described precisely using natural
language (and the reverse might also be true). For this reason, we believe that an explication
of the origin of natural human languages cannot be couched entirely in a natural language,
and that for this purposes other languages, such as formal languages, are required.

5.2 What is the point of constructing artificial systems?

Let me now address some criticisms touching on the usefulness of this kind of formal ap-
proach when trying to explain structures arising in living organisms, including languages
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and speech. First of all, how can we link abstract entities in a computer program with the
real world? How do we verify the hypotheses embodied in the program? Is it even justifiable
to attack a problem like the origin of speech, since after all there is a high likelihood that
we will never be able to verify our theories, given that so few traces remain?

In short, what is the point of an artificial system? How can it be verified? Answering
these questions requires to first set out our view of science as a highly constructivist activity
(Glasersfeld, 2001). Science can be seen as an activity that seeks to form representations
(often in the form of real or abstract machines) which help us to understand the world
we live in. In other words, theories are representations of the world that help us to put
some order into our view of it. To be sure, there are constraints on how we construct these
representations, with the result that certain representations such as those to be found in the
Bible are not scientific theories. An important constraint is that there must be no “miracles”.
Furthermore, these representations must form a coherent whole, and it should be possible
to pass from one to the other via logical connections. There may be gaps in the picture they
paint, and in fact a large part of scientific activity is guided by the goal of filling these gaps.
These representations must also be compatible with one’s observations, which themselves
depend on the theoretical context in which they are made. From time to time, new theories
are seriously at odds with the set of representations accepted by scientists of one era, but
scientists end up replacing the old narratives with new ones, because they judge them to
be more useful in understanding the world (this is what Kuhn calls a paradigm change, see
Kuhn, 1970). An example is the shift from Newtonian physics to the theory of relativity.
This vision is summarized by Einstein:

“Physical concepts are free creations of the human mind, and are not, however
it may seem, uniquely determined by the external world. In our endeavor to
understand reality we are somewhat like a man trying to understand the mech-
anism of a closed watch. He sees the face and the moving hands, even hears its
ticking, but he has no way of opening the case. If he is ingenious he may form
some picture of a mechanism which could be responsible for all the things he
observes, but he may never be quite sure his picture is the only one which could
explain his observations. He will never be able to compare his picture with the
real mechanism and he cannot even imagine the possibility or the meaning of
such a comparison” (Einstein and Infeld, 1967[1938], p31).

Einstein is thus able to enounce what amounts to a central principle:

“The object of all science, whether natural science or psychology, is to co-ordinate
our experiences and to bring them into a logical order” (Einstein, 1955[1922]).

On this basis, we defend here the idea that a theory can be useful if its connection
with reality is tenuous or even if observations show it to rest on false premises. For a
start, there are phenomena that we understand so poorly that it is already useful to be
able to imagine which families of mechanisms might explain them. Let us return to the
example of ice crystals whose morphology has been the subject of careful study by Nakaya
(Nakaya, 1954) and Libbrecht (Libbrecht, 2004). In physics there are are well established
theories on the behaviour of water molecules. In addition, we know quite well the shape
of ice crystals, and even under what conditions of temperature, pressure and humidity
these shapes appear. However there are numerous aspects that we still do not understand
concerning the mechanisms that cause the physics of water molecules to give way to the
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Figure 5.1: This figure was obtained after 13 iterations of the rule “if a neighbour is on, switch
on to00”, starting from an initial state with four central cells switched on and all the others off. The
different colours correspond to different steps in the iteration (the black cells correspond to stages 0,
5 and 10). This shows that rules of local interaction can lead to the growth of shapes resembling ice
crystals, thanks to self-organization. For more information, see http://www.lps.ens.fr/ weisbuch.

physics of crystalline structures. In addition to purely mathematical analytical models
(Langer, 1980), researchers have set up computer simulations that have led to significant
progress in our understanding of these mechanisms (Wolfram, 2002). They used cellular
automata. These are grids in which cell can be in an ‘on’ or an ‘off’ state. Their state
evolves as a function of their neighbouring cells and according to rules of the type: if
one neighbour is on, then switch on too. Wolfram (Wolfram, 2002), for example, presents
rules of this type such that starting from a group of four cells switched on at the centre
of the grid (the seed molecule that starts the crystalline growth), a shape similar to that
of ice crystals appears spontaneously by growth and self-organization, as shown in Figure
5.1. At the level of micro-structures, this cellular automaton is very different from real
water molecules. However, this simulation suggests a particularly stimulating vision of the
formation of ice crystals: after having seen it, it is easy to imagine that only the interaction
of water molecules, with their known properties, even if they have nothing to do with the
symmetry of crystals, can lead spontaneously to their formation without the need to appeal
to other forces. Thus one aspect of the properties of ice crystals is no longer a miracle.
At the same time, thanks to other computer simulations modelling the physics of water
models, the formation of specific crystalline structures can be studied quantitatively rather
than qualitatively (Kobayashi, 1998).

Next, a theory, especially a formal or computational theory, can be useful in evaluating
the coherence of other theories or logical compatibility among several theories. A theory
which is at some distance from reality or unverifiable can still bring order to the set of
existing theories. In fact, many of the representations which scientists construct, especially
in the social sciences, are verbal. Because they make only approximate assumptions or
depend on intuition to derive their conclusions, they may contain errors, or on the other
hand not be convincing enough for part of the scientific community. We will give examples
of simulations in computer science which allowed the subject to advance in these two kinds
of case (for numerous other examples see (Oudeyer, 2010).
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The first example concerns imitation and representation of the self by babies. It has been
suggested that when babies imitate the arm movement of another person with a movement
of their own arm, this shows that they must have some sort of ‘other-awareness’. This has
led some researchers to deduce that a baby possesses a rudimentary form of Theory of Mind,
and a fortiori that it possesses primitive representations of other beings (Guillaume, 1925).
However, a group of scientists comprising roboticians, psychologists and neuroscientists have
presented a robotic model in which a robot copies an arm movement of someone else, even
though it has no concept or representation of ‘other’ (Andry et al., 2001). The copying
is an effect of what they call perceptual aliasing: the robot thinks that the arm that it
sees is its own, and corrects the error between this perception and the state of its motors
as a consequence of a form of cognitive homeostasis. This shows that the observation of
an apparently complex imitation behaviour does not require a Theory of Mind. To be
sure, this does not show whether or not the baby has a Theory of Mind or not when
it acts in such a way, but this experiment constrains the intuitive conclusions that one
may reach on observing its behaviour. The way in which the robot copies could be very
different from the way in which the baby copies, but this robotic simulation acts as a very
powerful cautionary tale. This kind of model is interesting because we know exactly what
is in the robot or the program, and this opens the way to suggestive comparisons based
on behavioural analogies between the robot and living beings (many researchers also use
comparisons between animals, which has its advantages, but also the disadvantage that we
are a long way from understanding the cognitive and behavioural mechanisms of animals!).

A second example of a computer simulation concerns the case of the Baldwin Effect. In
the 19th century Baldwin (Baldwin, 1896) and Morgan (Morgan, 1896) developed a theory
that genetic evolution could be modified by learning. More exactly, they proposed that
certain acquired behaviours could become innate (genetically hardwired) with the passage
of generations and at the level of the whole population. This theory was mainly verbal
and was ignored by the scientific community until recently (French and Messinger, 1994).
This was not surprising because this theory is quite close to Lamarckism, which says that
evolution consists in the inheritance of acquired characteristics, an idea that was long dis-
credited (until recent discoveries in epigenetics showed that the mechanisms of heredity are
more complex than previously thought (Richards, 2006)). However, Hinton and Nowlan
(Hinton and Nowlan, 1987) presented a computational model proving that the concept of
the Baldwin Effect is compatible with Darwinian theory. Their model consists of a popu-
lation of sequences of 0 and 1 and ‘wildcards’, postulated to be the genes of a population
of individuals. Each gene codes for a trait which can have the value 0 or 1. This value can
be innately specified in the genome or acquired (by using the ‘wild cards’). The individuals
are evaluated according to a selection function: if all the individual’s traits, after using its
wild cards, are 1, then the individual has the maximal adaptive value; otherwise it has zero
adaptive value. This adaptive value is used to determine which individuals reproduce the
most. The simulation showed that when ‘wild cards’, modelling learning, are allowed, the
population converges much faster on the situation in which everyone has all traits set to 1,
than when learning is not allowed. Moreover, at the end, all the wild card alleles disappear
and all the traits are set to 1 innately. This model is very distant from real biology. The
assumptions behind it are even false (for example it is assumed that there is no structural
difference between the genotype and the phenotype). However, it has changed evolutionary
biology: the idea of the Baldwin Effect is now considered as plausible by biologists. Whether
the phenomenon actually occurs in nature is still an open question, but science has taken a
step forward.
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To summarize these different examples, abstract models (mathematical or computer
based) can be a long way from reality but nevertheless useful for drawing and constraining
the contours of the research space of theories. They can point to new ways of understanding
phenomena that were previously mysteries.

This is the epistemological framework in which the models presented in the next chapters
were designed. We do not intend to propose definitive explanations of how speech originated.
The complexity of these questions means they remain largely beyond the reach of a research
domain that is still in its infancy. The aim is exploratory: we will try to formulate and
suggest families of mechanisms that are plausible from an operational point of view and
capable of generating some of the speech structures that we are seeking to explain. The
relationship between these models and human systems is not a relationship of identity, but a
relationship of analogy. We will attempt to show that this kind of model is useful for spelling
out the contours of the space of possible explanations that have so far been proposed, as
well as generating new types of explanation. The principal aim of this work is to participate
in a new way of organizing the theoretical speculation about the origin of speech, in which
the concept of self-organization has a central role.



Chapter 6

A Model of Self-Organization of
Systems of Vocalizations

This chapter describes a simple version of an artificial system for studying certain aspects of
the morphogenesis of systems of vocalizations. It consists of a computer model simulating
a group of individuals that are capable of perceiving, producing and learning vocalizations.
Inasmuch as this system includes models (albeit simple and simulated) of physical properties
of the vocal tract and the ear — in other words, of the body — it is also a robotic model.
These individuals move randomly within a virtual environment, producing vocalizations,
that is to say movements of their vocal tract, in a kind of baby-talk or babbling that is
statistically influenced by the vocalizations uttered by their neighbours. Through a progres-
sive self-organization all the individuals will come to share the same system of vocalizations
where a small number of elementary sounds are systematically re-used for constructing and
perceiving vocalizations that are analogous to syllables. The system thus becomes discrete
and combinatorial.

6.1 Neural Networks, unsupervised learning and vocal
mechanisms

To construct the individuals’ speech production and perception mechanisms, we will adopt
the point of view of articulatory phonology (Browman et Goldstein, 1986), and more gener-
ally of a whole section of the research community in mammalian motor control (Kandel et
al., 2001), which defends the idea that gestures (or more generally relations between organs)
are the central elementary representations out of which the vocal movement is constructed.
Here, to be precise, a ‘gesture’ denotes a command specifying an articulatory target, itself
defined by a relation between several organs (like place of articulation or the distance be-
tween the lips)!. The following simplification is made here in relation to the description
of vocalizations made by articulatory phonology: instead of having vocalizations defined
by several parallel tracks of gestures, there will only be a single track. This means that
a vocalization will be a sequence of gestures strung together, but there will be no other

1However, the results presented here are also compatible with the idea that articulatory targets are
configurations defined by the individual positions of the organs, or else defined by a set of formants, for
example, in perceptual space

65
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gestures to carry out in parallel. In addition, for the purpose of visualizing the results, only
one, two or three dimensions will be used to define the articulatory targets (which could
be seen as place and manner of articulation as well as lip rounding, for example). One
vocalization will consist of a sequence of two, three or four gestures. These gestures, which
are motor commands, are executed by a lower-level control system which makes the organs
move continuously to achieve articulatory targets according to a specific timing.

In the version of the system presented in this chapter, individuals will be assumed to
be capable of retrieving the trajectory of relations between organs corresponding to a vo-
calization that they hear?. In this chapter individuals are also assumed to be capable of
finding the muscular activations which will move the organs in such a way that the relations
between organs specified corresponding to a given sound are realized. Various works in the
literature present mechanisms explaining how these translations from one space to another
can be learned and realized (Bailly et al., 1997; Howard and Messum, 2011; Moulin-Frier
and Oudeyer, 2012). An example will be given in the following chapter. For the moment,
we simply assume that individuals can do this. This will allow us to use just a single rep-
resentation in this chapter, namely that of relations between organs. Thus, acoustic or
muscular representations will not be used, which will give us a more intuitive visualization
and understanding. The term ‘sound’ will be used to refer to a vocalization, but only the
trajectory of relations between organs will be manipulated (thus we allow ourselves in this
section a slight extension of the term ‘sound’). What an individual perceives directly in the
vocalization of another individual is the continuous trajectory of relations between organs
(but not the gestures which produced it).

The next sections describe in detail the foundations, that is to say the pre-suppositions,
of the mechanisms comprising the internal architecture of the individuals.

Neural units

The artificial brain of each individual is composed of neural units, in the notation n; (see
figure 6.1). A neural unit is a box which receives input signals, corresponding to measure-
ments, and integrates them to calculate a level of activation. Functionally, the neural unit
models certain operations performed by biological neurons. The integration is typically
achieved by first comparing the vector of all the inputs with an internal vector, noted v; and
called the ‘preferred vector’, peculiar to each neural unit®. Then, the result of this compar-
ison is filtered by what is called an ‘activation function’, which calculates the activation, or
response, of the neuron.

The activation function here is a Gaussian function, whose width is a parameter of the
simulation. Gaussian activation functions ensure that there is one input which produces the
greatest response in the neuron: this is the input with the same value as v;. This is why
it is called the preferred vector. When inputs are distant from the preferred vector in the
space of inputs, the level of activation decreases according to a Gaussian function. When
the width of the Gaussian is broad, this implies that it is not very specific, i.e. that there
are many different inputs to which the unit responds significantly.

2The expression ‘trajectory of relations between organs’ is used instead of ‘sequence of gestures’ because
the individuals are not assumed to be initially capable of retrieving the articulatory targets from which the
continuous trajectory was generated (articulatory targets will be points like others on this trajectory). In
fact, any point on this trajectory could be a target used in specifying the production of the vocalization. This
means that initially the individuals are not capable of detecting the ‘sound events’ which might correspond
to articulatory targets.

3This internal vector corresponds to the weighting of neurons often used in the neural network literature.
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Figure 6.1: A neural unit and its Gaussian activation function. The input is a space of dimention
D. To increase clarity, the projection of the activation function on only one of its input dimension
is shown.

The preferred vectors of neural units change as and when new inputs are perceived. This
is how learning happens, and is described below under the heading “Plasticity”. The width
of the Gaussians does not change when stimuli are perceived; that is fixed. Thus the centres
of the activation functions evolve over time, but not their width 4.

[

Assumption 2: perceptuo-motor correspondences] Translation between perceptual space and
organ relation space

As said above, in this chapter an individual is assumed to be capable, given a continuous
acoustic signal trajectory, of retrieving the corresponding trajectory of relations between
organs °. However, individuals are not initially able to retrieve the articulatory targets
which were used to construct the trajectory of relations between organs. Given a sequence
of articulatory targets in organ relation space, individuals are also assumed to be capable
of finding a trajectory in the space of muscular activations which will move the organs in
such a way that the targets are achieved®

This will allow us to use only the level of representation dealing with relations between
organs and thus give a more intuitive visualization and understanding. If the three repre-

41f tune; ¢ denotes the activation function of n; at time ¢, s a stimulus vector, and v; the preferred vector
of n;, then the form of the function is:

2 2
1 *57%\vi75| /o

V2mo

tune; ¢ (s) =

The notation | v1 — v2 | denotes the norm of the difference between vectors vi and ve. The parameter
o determines the width of the Gaussian, and so if it is large the neurons are broadly tuned. A value of
02 = 0.001, as used below, means that the neural units respond significantly to about 10 percent of the
space of inputs.

5The next chapter describes how the type of translation that we assume here might be learned by the
individual.

6The function mapping organ relation space to the space of muscular activations is not an isomorphism:
a target in organ relation space can often be realized by several organs or combinations of organs. We
assume that at least one possibility can be found. How the choice between several possibilities can be made
is described in the literature (Bailly et al., 1997).
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sentations had been used, as schematized in Figure 6.2, there would have had three neural
networks, each composed of neural units coding a space. There would be a perceptual neu-
ral network, composed of neurons receiving their inputs from the activation of the cochlea.
These inputs could be formants, for example. Next, there would be neural units in a net-
work of the relations between organs, connected to neurons in the perceptual network. The
third neural network would be composed of neural units coding for muscular activations,
and connected to the neurons in the network for relations between organs. After that, the
activation of neurons in the muscular neural network would be used to control the speech
organs, producing sounds. Technically, assuming that individuals are capable of passing
from one representation to another means that the connections between neural maps are
such that when a sound activates the cochlea and the neurons in the perceptual network,
then the neurons in the network of relations between organs which are the most highly
activated have the preferred vector corresponding to the relation between organs which pro-
duced the sound. In addition, the neurons in the network of muscular activations which are
most activated have the preferred vector corresponding to the muscular configuration which
produced this relation between organs. Several papers have shown how these connections
could be learned during the course of infant babbling (Bailly et al., 1997; Oudeyer, 2003b).

Because only the organ relation space is used, the neural units take inputs directly coded
in terms of relations between organs. Producing a vocalization, programmed by a sequence
of activations of several n; as explained below, is therefore solely a matter of forming a
continuous trajectory in organ relation space. The individuals only exchange trajectories.
Figure 6.3 shows this simplification schematically.

There is also a module called “inhibition/activation” which can send a GO signal allowing
a vocalization to be produced when the neural units are activated. This is to say that in
the absence of this signal, the commands specified by the activation of the neural units are
in effect not carried out. This means that the activation of neurons n; by an external sound
does not directly provoke the reproduction of this sound. Copying requires the GO signal.
In the system, individuals never use this GO signal when they have just heard a sound, but
only at random instants, with the result that they do not copy what they have heard, and
thus in practice we do not see individuals imitating the vocalization of another individual
immediately after hearing it. However, as we will see, the neural system adapts in such a
way that the vocalizations of individuals are influenced by those that they hear.

Perception and plasticity

The last section explained that what an individual perceives in the vocalization of another
individual is a continuous trajectory in organ relation space. Now we will explain what is
done with this trajectory and how this changes the preferred vectors of neural units.

At the outset, the individuals are not able to detect high-level events in the continuous
trajectory, which would allow them to find what points correspond to the articulatory targets
used by the individual who produced the vocalization. They thus segment the trajectory into
lots of little slices, corresponding to the temporal resolution of perception (if we had used
the three representations, this would correspond to the temporal resolution of the cochlea).
Next, each little slice is averaged”, giving a value in organ relation space, which is then sent
to the neural units. These neural units are then activated according to the formula given in
the “Neural Units” section. Figure 6.4 shows this process schematically. The horizontal axis
represents time, and the vertical axis represents organ relation space. Here organ relation

7If we are working in more than one dimension, each dimension is averaged.
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Figure 6.2: A general architecture of a full system involving the three representational spaces.
Individuals include models of the ear, the vocal tract and its control and the neural system con-
necting them, and are capable of learning. They move around randomly within their environment
while babbling, neural activity occurring in an arbitrary fashion. This give rises to vocalizations
that are perceived by the individuals themselves and by their neighbours, who make no distinction
between the vocalizations of others and their own. The perception of vocalizations affects the neural
system, which in turn makes the production of future babblings be shifted towards the distribution
of vocalizations that have been heard. In this chapter we make the simplifying assumption that
correspondences between the auditive and motor representations of vocalizations are already known
to individuals, and so only an intermodal representation is used (organ relation map). The next
chapter shows how such correspondences may be learned by individuals during the course of their
babblings and as a shared combinatorial system self-organizes within their group.

space is one-dimensional. The continuous line represents a vocalization perceived by the
individual. The little segments into which it is divided represent the averages of the little
slices extracted by the temporal filter. These average values of these little segments are
the inputs given sequentially to the neural units. The neural units of this individual are
represented on the vertical axis: each point corresponds to a preferred vector. In effect, the
values of these points are within organ relation space. Each of the neural units is activated
by each of the averages.

When they are activated, the neural units are modified. This means that their preferred
vectors are changed. This change is a sensitization to the stimulus for those neurons which
responded significantly. This implies that if the same stimulus is given as input immediately
afterwards, the response of the neural units will be a little bit stronger. Each such change is
very slight, and weighted by the activations of each neural unit (a value between 0 and 1).
Units which are very active change more than units which are not. Figure 6.5 illustrates the
changing of preferred vectors. This figure represents the activation function of a neural unit
before it receives any input, and after it has received and processed one: the preferred vector,
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Figure 6.3: 1In this chapter one uses only the representation level of relations between organs,
because individuals are assumed to be capable of passing from perceptual space to organ relation
space, and from there to the space of muscular activations.

that is the centre of the Gaussian, has been shifted. We see that from a geometrical point
of view the preferred vector is shifted in the direction of the stimulus, and the amplitude of

this shift depends on the activation of the neuron®.

Production

The production of a vocalization consists in choosing a sequence of articulatory targets and
moving the vocal tract so as to achieve them. These articulatory targets are specified by
relations between organs, which are one-dimensional in the first simulations which will be
carried out. To choose these articulatory targets, an individual sequentially and randomly
activates units in its neural network, and at the same time sends the GO signal described
above. This activation is a command implementing the concept of gesture in this work.
A target is specified by the preferred vector of the activated neural unit. Then there is
a control system which executes these commands by making the relations between organs
move continuously and sequentially toward the target®.

8The mathematical formula of the new activation function is

1 ) 22
tune;t41(s) = —=— x elvit1=sl™/o

where s is the stimulus, and v; 141 the preferred vector of neuron n; after the processing of s:
Vi,t41 = Vit + 0.001 * tune; ¢(s) * (s — vi,¢)

9Note that this way of producing vocalizations already contains elements of discreteness. This model
assumes that vocalizations are specified by a sequence of targets. This is in fact in agreement with the
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Figure 6.4: Each individual obtains a continuous trajectory (in organ relation space) when it
perceives the vocalization of another individual. It then uses a temporal resolution filter which
segments this trajectory into a sequence of very short parts. For each of these parts, the average is
calculated, and the result is a stimulus which is sent to the neural network, whose units are then
activated. After reception of each stimulus and activation of the units, these are updated.

If three representations had been used, the control system would activate the muscles in
such a way that the organs would be moved towards configurations satisfying the specifica-
tions of relations between organs. Here, the control system directly generates a continuous
trajectory in organ relation space which passes through the targets. This is realized by
polynomial interpolation. Figure 6.6 shows this process of production schematically. In
this figure the horizontal axis represents time and the vertical axis represents organ relation
space. The preferred vectors of the neural units of an individual’s network are represented
also on the vertical axis. Five of these units are activated sequentially, defining five articu-
latory targets. Then the control system (polynomial interpolation) generates a continuous
trajectory passing by all these points. This trajectory is the vocalization which will be
perceived by the individuals who hear it.

One crucial point is that the neural units n; are used both in the process of perception
and in the process of production. Consequently the distribution of articulatory targets used
in production is the same as that of the preferred vectors, which themselves change as a
function of the vocalizations heard in the environment. This implies that if an individual
hears certain sounds more often than others, it will also tend to produce them more often
than other sounds (a "sound" here refers to one of the little subdivisions or slices of a
vocalization created by the temporal filter, as described above). We may remark that
individuals do not attempt to reproduce vocalizations directly after hearing them produced

literature on mammalian motor control (Kandel et al., 2001), which describes it as organized at two levels:
a level of discrete commands (our articulatory targets), and a level concerned with their execution. Thus the
element of discreteness seen in discrete commands should not be a trait which it is necessary to explain in
the context of research on the origins of speech, since it is already present in the motor control architecture
of mammals. However, the model does not assume that the articulatory targets are initially organized: the
set of commands used to define the targets is a continuum, and there is no re-use of articulatory targets
from one vocalization to another; discreteness and a form of primitive combinatoriality will emerge from
the simulations. The model also does not assume that there is initially any discreteness at the level of
perception, in the sense that initially the individuals are not capable of perceiving “events” in the flux of
sound (however, at the end of a simulation it will be possible to identify the categories of articulatory targets
used to produce the vocalization).



72CHAPTER 6. A MODEL OF SELF-ORGANIZATION OF SYSTEMS OF VOCALIZATIONS

4 1 (level of activation of unit ni)

tuning function
of ni at time t

tuning function
il of ni at time t+1
I
I

11 | i G
-+ input space)
. a _— input at
prelerre time t
input vector .
of ni at time t preferred input vector

of ni at time t+1

Figure 6.5: The updating of each unit when activated by a stimulus is such that the preferred
vector is changed so that the unit responds a little more if the same stimulus is presented again
immediately afterwards. This is a sensitization of the units, which is stronger when the neurons
are highly activated, and weaker when they are less activated.

by another individual. The influence that hearing the vocalizations of others has on an
individual’s babbling is a collateral, statistical effect of the increase in sensitivity of the
neurons, a quite generic mechanism of the low-level neural dynamics (Kandel et al., 2001).

Initial configuration of the neural units

The preferred vectors of the neural units are by default initially random with a uniform
distribution in the basic version of the model that we are considering. A uniform distribution
signifies that there are preferred vectors throughout the whole space at the same density
everywhere. This means that at first the individuals produce vocalizations composed of
articulatory targets distributed uniformly through the space. This in turn implies that at
the outset the whole continuum of possible gestures is used (so there is no discreteness), and
because there are many neurons portioned out in the whole space, the re-use of articulatory
targets is very rare and due to chance (so there is no combinatoriality). Also, the overall
activation of the neural map is of about the same amplitude whatever the stimulus.

This assumption will be modified in a “biased” version of the model, to be presented
later, in which the initial distribution of the preferred vectors will no longer be uniform. A
biased distribution is not symmetric: initially certain regions of organ relation space will
contain more preferred vectors than other regions. Such a bias makes it possible to address
constraints resulting from the function mapping articulatory configurations to sounds. A
uniform distribution comes down to assuming that this function is linear and symmetric. A
biased distribution takes into account the possible non-linearities.

In fact, looking at the human vocal tract, we see that there are relations between organs
where a small change produces a small change in the sound, but there are also relations
between organs where a small change produces a large change in the sound. If an architecture
like that in Figure 6.2 had been used, in which the neural units of the network of relations
between organs are activated by neurons of the perceptual network, this would mean that
there are certain sounds which significantly activate neural units in the network of relations
between organs whose preferred vectors are in a stretched-out region of organ relation space,
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Figure 6.6: When an individual produces a vocalization, several articulatory targets are specified
by random sequential activation of neural units. The preferred vectors of these neural units define
the relations between organs to be reached at given times. These activations are commands called
gestures in articulatory phonology. Next, a control system constructs a continuous trajectory which
passes through all the articulatory targets.

and other sounds which only activate the neurons whose preferred vectors are in a confined
region of organ relation space. This makes the learning rules of the neurons have different
outcomes in different parts of the space. In some regions of the space the preferred vectors
will change faster than in other regions. This leads to a non-uniformity in the distribution of
preferred vectors, with more neurons in the regions where small articulatory changes yield
small changes in sound, and fewer neurons in regions where small articulatory changes give
large changes in sound. In the next chapter, where a part of the architecture in Figure 6.2
will be implemented, this bias will be introduced by using a realistic articulatory synthesizer
throughout the simulation. For the present, and to aid comprehension, this bias is introduced
from the start by warping directly the initial distributions of preferred vectors.

Tweaking the initial distribution, in particular using a uniform distribution, allows us to
examine what outcomes are due or not due to the presence of non-linearities in the function
mapping from sounds to articulatory configurations. In particular, we will show that neither
discreteness nor combinatoriality require non-linearities in order to be explained, a rather
original conclusion given the existing theories in the literature (see Chapter 4).

Interactions between individuals

The individuals move around in their world in a random fashion. At random moments, they
produce a vocalization, which is heard by the nearby individuals, and also by themselves.
The choice of how many individuals hear the vocalization produced by one of them does not
affect the results: these are about the same whether one, two, three or more individuals are
made to hear the vocalization. For the sake of generality, the simulations reported below
only use one individual. From an algorithmic point of view, this is equivalent to randomly
choosing two individuals from the population, and making one produce a vocalization which
is heard and processed by both of them.

The individuals are therefore not playing a language game in the sense used in the
literature (Hurford et al., 1998; Steels, 1997), and in particular they are not playing the
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Figure 6.7: Initial distribution of preferred vectors of two individuals. The organ relation space,
on the horizontal axis, is one-dimensional here. The individuals produce vocalizations specified by
articulatory targets spread across the whole continuum (the vocalizations are holistic).

imitation game used some other models of the origin of speech (de Boer, 2001; Oudeyer,
2001b; Oudeyer, 2002c). Their interactions are not structured; there are no roles or coordi-
nation. They do not distinguish between their own vocalizations and those of others, and
do not even possess representations of “others”. There is no linguistic communication, that
it to say individuals never emit a signal with the intention of transferring some information
which will modify the state of another individual.

6.2 Dynamics

6.2.1 Linear vocal apparatus

We will now describe what happens to a population of individuals who implement these
assumptions. Organ relation space will here be one-dimensional, and the initial distribu-
tion will be uniform, which models the absence of morpho-perceptual constraints on the
production and perception of sounds!®.

Figure 6.7 illustrates the distribution of preferred vectors of two individuals at the start
of the simulation. The horizontal axis represents organ relation space (for example, a place
of articulation or lip-rounding) with normalized values between 0 and 1, and the points
shown inside it are the preferred vectors of the neural units of one individual. The vertical
axis represents the density of preferred vectors, which makes it clearer how they are spread
around, especially where many points are on top of each other. They are distributed ap-
proximately uniformly. As the learning rule of the neural units makes the individuals tend

10Here o = 0.001 and there are 150 neural units and 10 individuals.
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Figure 6.8: The distribution of preferred vectors of neural maps of the same two individuals as
those in figure 6.7, after 2000 vocalizations: they are multi-modal, which means that the articulatory
targets used are taken from among a small number of clusters, and moreover these modes are the
same in both individuals (the speech code is shared and discrete). Due the the fact that there
are few modes, they will automatically be systematically re-used to construct vocalizations that
sequence several random selected targets (so the code is combinatorial).

to produce the same distribution of sounds as they hear around them, and since all the
individuals produce roughly the same distribution of sounds initially, the initial situation
is an equilibrium and is symmetric. It is a situation in which each neural map is in an
initial state analogous to the initial state of the ferromagnetic plates described in Chapter 3
(with the difference that here we have a population of neural maps that interact with each
other). Because of the stochasticity in the mechanism, there will be fluctuations. Studying
the evolution of the distributions shows that the initial equilibrium is unstable: fluctuations
change the state of the system. Figure 6.8 shows the distribution of preferred vectors of the
same two individuals 2000 vocalizations later. It can be seen that now there are clusters
(i.e. clearly discernible groups) and these clusters are the same for both individuals. The
new distribution of their preferred vectors is multi-modal; symmetry has been broken. This
means that the articulatory targets that they use to produce vocalizations are now taken
from among one of the clusters (or modes, as they may also be called). The continuum
of possible targets has been broken, and production of vocalizations is now discrete. In
addition, the number of clusters appearing is small, which automatically results in the ar-
ticulatory targets being systematically re-used to produce vocalizations, which have become
combinatorial. All the individuals share the same speech code in the same simulation. By
contrast, in two different simulations, the position and number of modes is different, and
this is true even when the parameters used in the simulation remain the same. This is due
to the inherent stochastic nature of the process. Figure 6.9 illustrates this diversity.
Evolution stabilizes during the simulation. To show this, the degree of cluster-formation
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Figure 6.9: Several examples of final distributions of preferred vectors in different simulations.
All these results are obtained using the same parameters. The stochasticity of the system makes
possible the generation of phoneme inventories of different sizes, and their spatial arrangements are
also different.

and the similarity among the distributions of preferred vectors of individuals were calculated
at each time-step. This was done using the average entropy of the distributions and the
Kullback-Leibler distance between two distributions (Duda et al., 2000)!!. Figures 6.10 et

11 At first a model of the distributions of preferred vectors in each neural map is made. The “fuzzy binning”
technique (Duda et al., 2001) is used. This consists of approximating the distribution locally at a certain
number of points spread out in the space to be modelled. Here, we take 100 points regularly spaced between
0 and 1. For each of these points v, an approximation of the local density of points is calculated with the
formula:

_ Hv—=v;ll

_ 1150 1

Pv =1y i=1 2mwo 7

where the v; are the preferred vectors of the neurons of the neural map. o is set so that the Gaussians have
a width equivalent to 1/100. Once the distributions of the preferred vectors of the maps of all individuals
have been modelled, the entropy of each one can be calculated (Duda et al., 2001). Entropy allows indirect
evaluation of the degree of cluster-formation, or organization, of the points in a distribution. Entropy is
maximal for a completely uniform distribution, and minimal for a distribution of points or vectors which all
have the same value (when there is a single point cluster). Entropy is defined by the formula:

entropy = — 211201 Poln(py)

Next, the average of all the entropies of all the distributions (one for each individual) is calculated, giving
an evaluation of the average degree of cluster-formation across the maps of all the individuals. This is thus
a measure of the degree of phonemic coding in the population of individuals. To evaluate the degree of

similarity between two distributions p and ¢ of the preferred vectors of each individual, the Kullback-Leibler
distance function is used, defined as follows:

distance(p,q) = % > qvlog(gfz) + Pulﬂg%
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Figure 6.10: To evaluate the temporal evolution of distributions of preferred vectors of neural
units, their average entropy was calculated at each time-step. It can be seen, in this example of a
simulation run, that it decreases (this corresponds to the formation of clusters or modes), and then
stabilizes (this corresponds to a converged state with several modes).

6.11 show how these two measures evolve over the course of a simulation involving 10 individ-
uals. On the one hand, entropy decreases, and then stabilizes, which shows crystallization,
or cluster-formation. On the other hand, the average distance between distributions of two
individuals does not increase (initially, they already have the same uniform distribution!),
and even decreases, showing that the modes that emerge are the same for all individuals.

The reason why there is crystallization is that because of the natural stochasticity of the
mechanism, from time to time certain sounds are produced more often than others by the
population of individuals (here again, a “sound” refers to a small slice of a vocalization).
This creates deviations from the uniform distribution, which are sometimes amplified by
the learning mechanism in a positive feedback loop. Then symmetry is broken. We see the
same typical ingredients of self-organization phenomena described in Chapter 3.

However, to be precise, what we are here calling the state of crystallization in which
several modes emerge is not yet the equilibrium state of the system. In fact, if it were
possible to let the simulation run for an an extremely long time, in all cases, whatever
the parameters, the outcome would be a single cluster, a single mode. This is because
the adaptation rule for preferred vectors is the only driving pressure, at each time-step
pushing the preferred vectors toward the vector corresponding to the stimulus. As the
stimuli are generated from these distributions of preferred vectors, they are always inside
the zone defined by all the preferred vectors of all the individuals in the community. And
thus globally at each time step this zone shrinks (even if locally the neurons may distance
themselves from each other because of the nonlinearity of the adaptive rule). But at the
moment when different clusters are formed, the stimuli become concentrated right in the
zones defined by the clusters. Imagine that there are two clusters C1 and C2. That means
that stimuli are statistically very concentrated around the centres of C1 and C2. Now take
a stimulus corresponding to the centre of Cl. It will simultaneously make the preferred

In this way all the pairwise distances between the distributions of all the individuals is calculated, and the
average is taken to determine at what point the individuals have (or do not have) a shared organization of
their space of commands.
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Figure 6.11: The average distance between distributions of preferred vectors of the neural units
of each individual; we see that it stays the same, meaning that the modes of all the individuals are
identical at the end of the simulation.

vectors of C1 and C2 move closer to the vector defining it. For those of C1, this will result
in making them move even closer to the centre of C1, and will finish by hardly moving
at all once they are there. For those of C2, there will be very little effect: the attractive
force due to the Gaussian function is extremely weak at average and longer distances. If
the default Gaussian function is used in our simulations'?, then if C1 and C2 are separated
by a distance of 0.2, the displacement of the vectors of C2 toward C1 with each perception
of a stimulus from C1 is 5.36 * 1072, This means that it would need of the order of 108
time-steps in the simulation to see the two clusters come completely together, which would
take a simulation time on the computer longer than the age of the universe, and thus much
greater than the lifetimes of the individuals in the model or indeed of any organism. This
is why one can call the state in which several modes like C1 and C2 appear a “state of
convergence”. Thus clusters are formed which can quickly merge with each other, and when
all the remaining clusters are far enough apart!® we enter into a phase in which no more
mergers occur for a very long time (this in fact never happens because the individuals do
not live long enough). This phenomenon of self-organized pattern-formation during the
passage of a dynamic system toward an equilibrium state is analogous to those discovered
by Nicolis and Prigogine (Nicolis and Prigogine, 1977) in dissipative systems. Moreover, it
may be noted that this kind of phenomenon was not studied or even conceptualized very
early in the 20th century because the mathematical tools used by physicists only enabled
them to calculate equilibrium states. It was computer simulations that made it possible
to observe the behaviour of dynamic systems before they reached their equilibrium states
and to discover that highly organized structures could be formed. In the same way, the
study of the systems presented in this book necessitate computer simulations to investigate
efficiently their dynamics.

Finally, if there is only one individual in a simulation, and it is allowed to produce and
hear vocalizations, then its network of neural units will also self-organize into a state where
several modes coexist. This means that there are two separable results: discreteness and

12that for which o2 = 0.001
Babout 0.1 when o2 = 0.001
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combinatoriality are explained by the coupling between production and perception with the
neurons n;, and can be obtained with just one individual; but when several individuals
are brought together, then their repertoires of clusters, that is of commands and thus of
gestures, converge (while if each developed its repertoire privately, this would be particular
to each individual). Moreover, if one individual with a uniform neural map is put into a
population of individuals which have already formed a speech code, this individual will learn
that code. This means that the mechanism for learning a speech code is the same as that
which enables a population to form one starting from nothing.

Robustness of the model

The artificial system has a certain number of parameters: the width of the neural tuning
function (02), the number of individuals, the number of neurons, and how many individuals
hear a vocalization. Only 2 has a crucial influence on the dynamics. In fact, for example,
the number of neurons changes nothing at all in the results when it is large enough, that is
when it allows a sufficiently dense initial coverage of the space. Experimentally, the number
has to be greater than 100 neurons to obtain the results we have presented. The influence
of the number of individuals was also tested by doing simulations with between 1 and 50
individuals: convergence is obtained every time at the end of a number of interactions by
each individual rising very little (between 150 and 500). The number of individuals hearing
vocalizations pronounced by one of them also has very little influence. Thus, this section
will focus on the study of the influence of 2.

This parameter was varied in a range of values from 0.000001 to 0.1 (using the values: 0.1,
0.05, 0.01, 0.005, 0.001, etc, 0.000001). Figure 6.12 shows some of the Gaussian functions
associated with these parameters. It can be seen that all the relevant space is covered,
that is that the possibilities go from the Gaussian with width equal to the width of the
whole space down to the Gaussian with tiny width. For each of these parameter values,
10 simulations with 10 individuals were run, and the average entropy of the distributions
of individuals was measured once convergence was reached (in the sense explained in the
previous section). Entropy is a way of measuring the number of emerging modes (or the non-
emergence of modes, when entropy is maximal). Figures 6.13 and 6.14 give the results. To
represent o2, which varies over several powers of 10, a logarithmic scale (base 10) was used.
For example, 02 = 0.001 = 1072 is represented by point 3 on the z axis in Figure 6.13. Three
parts are distinguished, which could be called phases, as in the case of the ferromagnetic
plaques discussed in chapter 3. The first phase involves all the values of o2 greater than
0.05: a single cluster forms. This is the maximal amount of order that can be obtained,
corresponding to minimal entropy, and the greatest breaking of symmetry. At the other
extremity of the space of values, when o2 is less than 107°, entropy is maximal: the initial
symmetry corresponding to a random uniform distribution of preferred vectors is not broken.
This state of maximal symmetry corresponds to a state of disorder. Figure 6.14 (bottom
panel) gives an example of this. Between these two regions of possible values, there is a
third phase corresponding to the formation of several well-defined clusters (between 2 and a
dozen, beyond which there are no proper clusters and the individuals are not coordinated).
It is in this region that the o2 = 0.001 default parameter value of the preceding sections
is found. This organization of preferred vectors into well defined structures is a complex
structure appearing at the boundary region between “order and chaos”, as it is often simply
labelled in the literature (Kauffman, 1996). The transitions between these three phases are
analogous to those described for Bénard cells or ferromagnetic plaques in chapter 3. In
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Figure 6.13: Variation in the average entropy of the distributions of preferred vectors produced
by simulations using different values of 6. To represent o2 a scale of powers of 10 is used: for
example o2 = 0.001 = 1072 is represented by point 3 on the x axis. Three phases can be seen: for
low values, only one mode is formed; for high values the distribution stays random and uniform:;
for intermediate values several well-defined modes emerge.

addition, it should be noted that the region of parameter values in which repertoires shared
between all the individuals are formed is very large: between 0.00001 and 0.01, that is a
space covering several powers of 10! It can thus be said that the behaviour of the artificial
system is very robust in the face of changes in parameter values.

6.2.2 Nonlinear vocal apparatus

In the preceding sections the initial distribution of preferred vectors was assumed to be
roughly uniform. This meant that the function mapping a sound to articulatory configura-
tions was linear, and thus took no account of constraints due to the physical nonlinearities of
the vocal tract. This was interesting because it enabled us to show that no initial asymme-
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try is necessary to obtain discreteness (which is a property of asymmetry). In other words,
this shows that there is no need to have discontinuities or non-linearities in the function
mapping sounds to articulatory configurations to explain phonemic coding (this does not
mean that the nonlinearities do not help, just that they are not necessary).

However, this function has a particular form in humans, which introduces a bias in
speech sounds. We explained earlier that this bias could be modelled for the moment by
manipulating the initial distribution of preferred vectors.

In this chapter we consider an abstract bias, which does not realistically reproduce
the non-linearities of the human vocal tract, but whose generic nature will enable us to
understand the consequences of the presence of non-linearities. We are still dealing here with
the case of a one-dimensional organ relation space. The initial density of preferred vectors
increases linearly between 0 and 1 (it was constant in the case of a uniform distribution).
Figure 6.15 shows the initial distributions of preferred vectors of two individuals. It can
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Figure 6.15: Initial biased distribution of preferred vectors of neural units of two individuals.
This models constraints due to the non-linearity of the function mapping sounds to articulatory
configurations. It can be seen here that there are more preferred vectors in the second part of the
space.

be seen that there are fewer neurons with preferred vectors close to 0 than neurons with
preferred vectors close to 1. This naturally leads to a statistical preference for modes or
clusters located in the second part of the space in relation to clusters situated in the first
part of the space. Figure 6.16 shows the same two individuals’ 2000 vocalizations later.
The preference for modes in the second part of the space is however only statistical: it is
possible for groups of individuals to develop a system with just as many modes in the first
part of the space. Figure 6.17 gives some examples of the diversity of systems obtained.
This phenomenon is crucial for understanding both the presence of statistical structural
regularities in the phoneme inventories of human languages, and at the same time their
great diversity. The following chapter will make a more detailed study of this aspect, using
realistic constraints which will enable us to compare the results from the artificial system
with the sounds of human languages.

6.3 Categorization and perceptual illusions

In the work so far, the individuals have had no mechanism for categorizing the articulatory
targets that they use. That is, they were not able to collect similar targets in the same “bag”.
They had no way of seeing that when they activated two neurons from the same cluster (once
clusters were formed), they were actually using this same cluster, and so the same phoneme.
Thus in a certain way discreteness and combinatoriality were in the eye of the beholder, but
the individuals had no knowledge of these properties. In the same way, when they perceived
a vocalization and passed it through the temporal filter to decompose it into little slices
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Figure 6.16: Distribution of the preferred vectors of the same two individuals after 2000 vocaliza-
tions. There is a preference for clusters, and therefore for articulatory targets, in the second part
of the space.

thenceforth approximated by their averages, they had no way of organizing these sounds
into different categories. This could have enabled them to retrieve the articulatory targets
used to produce the vocalization. In this part of the work we will therefore extend the
neural mechanisms so that the individuals are capable of categorization. We define here
this capacity as follows: categorization comes down to getting the system into a stable state
in which the activations of all the neural units remain fixed. Two stimuli will be categorized
as the same if the state into which they move the system is the same, and different if this
state is different. In the preceding sections, in a certain way, the individuals had neural maps
which directly reached a stable state after the perception of a stimulus: one input activated
all the neurons and this activation did not switch until a new input was provided. But in this
way, two stimuli close to a cluster of preferred vectors, but slightly different, led to overall
activity of the map similar, but not exactly identical. So we need to add a mechanism of
relaxation that leads the neural units to precisely the same pattern of activations.

Neuroscientists studying the human brain have often used neural maps of this kind, that
is to say variants of a model developed by Kohonen (Kohonen, 1982), to model cortical
maps. Cortical maps, as their name might suggest, are capable of making models of their
environment (there are auditory, visual, tactile maps, and so on), and their information is
possibly used by other parts of the brain (Afflao and Graziano, 2006). These other parts
of the brain use the stored information via a form of decoding that attempts to reconstruct
the input stimulus which gave rise to the current set of neural activations. A discovery
in neuroscience by Georgopoulos (Georgopoulos et al., 1988) makes it possible to set up a
model of the way in which this decoding is carried out. The method uses the concept of
“population vector”. It involves the sum of all the preferred vectors of the units of the neural
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Figure 6.17: Some examples of systems obtained after 2000 vocalizations. The preference for
clusters located in the second half of the space is only statistical: it sometimes happens that the
first part of the space contains the majority of clusters.

map (weighted by their activation) and normalized by the sum of all activations!4. When
there are many neural units and their preferred vectors are uniformly distributed through
the space, then this method reconstructs the input stimulus fairly precisely. However, if the
distribution of preferred vectors is not uniform, some inexactness appears. Some researchers
think that this inexactness is a defect of Georgopoulos’ model, and have tried to put more
precise formulas in place (Salinas et Abbot, 1994). However, this inexactness can also be

141f 5 is the stimulus, and N the number of neural units, then

N
Dieg tune; ¢ *v;

pOp(S) = Zf\]:l tune; ¢

is the population vector which recalculates s starting from the set of activations tune; ; of the neural units
and of their preferred vectors v;.
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Figure 6.18: The preferred vectors of two individuals at the beginning of the simulation.

seen as allowing us to account for psychological phenomena like acoustic illusions. We will
show that the perceptual magnet effect, studied by Kuhl and his colleagues (Kuhl et al.,
1992) and described above in Chapter 2, can be explained by this inexactness. Then we will
show how a simple feedback loop between the neural map and the decoding system gives us
a categorization mechanism.

Let us briefly recall what the acoustic illusion known as the “perceptual magnet effect”
consists of. Our perception of sounds is biased by our knowledge of the sounds of our own
language. Kuhl’s team showed that when people have to judge the similarity of pairs of
vowels, they tend to perceive vowels as closer than they really are in an objective physical
space when they are both close to the same prototype vowel in their language, and to perceive
vowels as further away from each other than they really are in physical space when they are
near to different prototypes. In brief, there is a sort of perceptual deformation that “attracts”
sounds around each prototype in a language (from the point of view of a person’s sensation
of it). As a collateral effect, the differences between vowels of different categories grow.
This is an instance of a wider psychological phenomenon called “categorical perception” and
defined thus: “Categorical perception occurs when the continuous, variable and confusable
stimulation that reaches the eyes and ears is sorted out by the mind into discrete, distinct
categories whose members somehow come to resemble one another more than they resemble
members of other categories” (Harnad, 1987). Evidently, as these illusions depend, in the
case of sounds, on the sound prototypes in a given language, they are cultural phenomena.

The process of decoding with the population vector can be used to model the phenomenon
of a hearer’s sensation of a sound. It has already been used by Guenther and Gjaja (Guenther
and Gjaja, 1996) to account for the perceptual magnet effect. In this model, the authors
use a neural map similar to the one that we have presented, with the difference that they
use a scalar product rather than a Gaussian function as the activation function of the neural
units. The adaptation rule for preferred vectors of neurons is also similar to ours. But a
large difference with the work presented here is that they get an individual to learn a sound
system which already exists (in this case a vowel system). Their research does not centre
on the origins of speech, and so they do not ask where the sound system they assume comes
from.

To illustrate this process new simulations similar to those presented earlier are described
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Figure 6.19: Representation of the way the individuals sense sounds at the beginning of the
simulation: the start of each arrow corresponds to a stimulus activating the neural map, and the
ends of these arrows correspond to the reconstructions of the stimuli after decoding of the activations
of the neurons by the population vector. Here the perceptual warping, that is to say the difference
between the stimulus and its internal reconstruction, is at first small.

here, but using a 2-dimensional organ relation space, which will enable us to visualize the
perceptual magnet effect with the population vector decoding system. Figure 6.18 shows
an example of the distributions of preferred vectors of the neural maps of two individuals
at the beginning of a simulation. After 2000 vocalizations, the same two individuals are
found to have neural maps like those presented in the upper panel of Figure 6.20. Clusters
shared by the individuals are formed, but they are not very visible in the representation of
preferred vectors because on the one hand most of the preferred vectors in the same cluster
are represented by the same point (they have quasi-identical values) and on the other hand
there are still a few isolated neurons themselves also represented by a single point. It is the
lower panels, with arrows, that will let us see the distribution of preferred vectors that will
be explained in the following paragraphs.

One can now evaluate the way in which these two individuals “sense” sounds at the
beginning and end of the simulation. To do this, one can generate some artificial static
sounds which serve as input stimuli. These stimuli are spread regularly throughout the
space, according to a regular grid. For each of these stimuli, the activations of all the neural
units are calculated, from which the population vector is calculated in its turn, giving a
point in organ relation space, the result of the decoding. It is possible to represent the set
of these stimuli and their decodings from activations of the neural maps using arrows: each
arrow corresponds at its start to a stimulus and at its head to the point decoded by the
population vector, that can be used to model the “sensation” of a sound experienced by an
individual. Figure 6.19 thus represents the way in which the individuals “sense” sounds at the
beginning of a simulation, and shows that the decoded points correspond fairly well to the
stimuli (despite some tiny inexactitudes). Figure 6.20 represents the same two individuals’
way of sensing sounds 2000 vocalizations later (lower panel). The decoding is now no longer
precise at all, and the perceptual warping — asymmetrically within the space of sounds —
therefore substantial: the sensation of sounds by individuals is significantly different from the
objective physical properties of the stimuli. After decoding the stimuli are shifted towards
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Figure 6.20: Example of the state of the neural maps of two individuals after 2000 vocalizations.
The upper panels directly represent the preferred vectors. The lower panels represent the way in
which the individuals sense sounds at this time. It can be seen that there is an organization of
the space into regions in which stimuli are perceived as closer to the centres of these regions than
they objectively are. These regions are shared by both individuals. They correspond to basins of
attraction defined by categorization behaviour once a coding/decoding feedback loop is introduced
into the neural map.

the closest cluster. This corresponds precisely to the perceptual magnet effect. In effect, the
centres of clusters correspond to prototypes in their sound systems, and so the individuals
behave in the same way as Kuhl’s subjects (Kuhl et al., 1992).

If, moreover, if we treat Figure 6.20 as a surface viewed from above, whose slopes are
represented by the arrows (the arrows pointing downwards), we see a landscape with valleys.
If a marble is dropped in one of these valleys, it will roll to the bottom and stop at the same
place, from whatever position it is dropped. If it is dropped in another valley, again it will
roll downwards, but stop at a different valley bottom. This way of seeing Figure 6.20 is in
fact the basis of an extension of the system enabling it to categorize sounds, in the sense set
out above.

Since the point decoded by the population vector is specified in the same representational
space as the input point, one can easily re-deploy this vector to the input layer of the neural
map as a stimulus, but generated by the individual itself, as Figure 6.21 shows. This idea
comes close to the re-entrance systems described by Edelman in his theory of human brain
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Figure 6.21: The categorization mechanism: after the stimulus has activated the neural map, the
population vector is used to re-construct this stimulus and the result is fed back into the neural map.
This process is repeated until the neural map activation is stabilized. The attractor corresponds to
the recognized category of the stimulus.

functioning (Edelman, 1993). Indeed, Edelman describes the human brain not as a device
in which information flows in one direction from the sensor to the control centres, but rather
as a system in which the control system itself sends a lot of information toward the sensors,
creating feedback loops. In the system, once the decoded point is re-deployed as an input, it
reactivates all the neural units, and a new decoding is effected. Then the process is iterated.
This system is schematized in Figure 6.21. Geometrically, the sequence of positions of
these successive points follows exactly the trajectory of the marble rolling down the valley:
after several iterations the decoded point is the same as the point given as input to the
neural map. The activations of the neural units stay the same with each iteration once this
fixed point is reached. The system is then in a stable state, corresponding to a categorization
of the stimulus given initially as input. To follow the trajectory of these successive points,
simply start at the stimulus point and follow the arrows, for example in Figure 6.20. Each
neural map defines a landscape of arrows, and thus of valleys and valley bottoms (in the
language of dynamic systems these are called basins of attraction and attractors) which are
peculiar to it. When the preferred vectors are distributed uniformly across the whole space,
a certain number of valleys appear whose locations and shapes differ from one simulation
to another. Figure 6.22 gives some examples. When clusters appear, then those which are
big enough each define a valley and an attractor. Thanks to the smoothing property of the
Gaussian activation function for neural units, the fact that there are neural units that do
not belong to clusters (this results from the stochasticity of the mechanism), and which thus
introduce a kind of “noise” into the landscape of neural units, does not modify the global
landscape of the valleys of a set of clusters. Thus, for example, the individuals in Figure
6.20 do not have exactly the same neural maps, but share the same landscape of valleys,
because they have the same clusters. They thus categorize sounds in the same way. This
makes them able measure the discreteness of their speech system themselves. Each has a
way of telling when two sounds are different and when two sounds are the same. They are
now capable of segmenting the continuous trajectory of a vocalization into parts of which
each little slice, the output of the temporal filter, is an input categorized in the same way.
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Figure 6.22: Examples of the systems of basins of attraction that can be obtained. It can be seen
that their number, as well as their shapes and their locations, are varied.



90CHAPTER 6. A MODEL OF SELF-ORGANIZATION OF SYSTEMS OF VOCALIZATIONS



Chapter 7

Learning Perceptuo-Motor
Correspondences

In the previous chapter, it was assumed that individuals in the model knew the corre-
spondences between the space of perceptual representations and the space of gestural and
muscular representations. This allowed us to present a simple mechanism accounting for
the self-organizational dynamics forming a discrete combinatorial speech code shared by a
population of individuals. We have, however, suggested that the architectural components
of the individuals would be generic and not specific to speech. It remains to show how the
capacity to pass from one space to another can be realized by neural structures that are nei-
ther pre-wired nor specific to speech, in a generic learning process that is common to other
faculties than speech. We will implement standard mechanisms of learning, based on the
“Hebbian” reinforcement of neural connections, that have already been used for the learning
of correspondences between hand and eye, between leg movement and body locomotion,
and also between movements of the vocal tract and the sounds that are produced. However,
here we will use these mechanisms in a novel context: rather than teaching an individual
the perceptuo-motor correspondences in a system of vocalizations that exists already, the
learning system will be influenced by the babblings of other individuals that initially have
no structured repertoire of vocalizations. And a system of speech, shared and combinatorial,
will nevertheless be seen to emerge in this situation.

To do this, we will modify these previous assumptions. While we assumed earlier that
individuals were capable, given a sound stimulus, of retrieving the corresponding articulatory
configuration, this assumption will no longer be made here. We also explained that there
were two functions to learn: one function from perceptual space to organ relation space, and
another mapping from relations between organs to the space of muscular activations. For the
sake of simplicity, and because no effective and precise model is available of the physiological
system that links relations between organs to muscular activations, we concentrate here on
learning the function from sounds to relations between organs.

This means that two representations are used here, a perceptual representation and a
representation of the relations between organs. The individuals no longer have one, but
two neural maps, each coding a different space, as shown in Figure 7.1. The perceptual
map is composed of neurons with properties identical to those described earlier, but these
receive input values provided by a model of the ear. The motor network is composed of
neurons taking as input activation values from the perceptual map. In addition, these motor

91
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Figure 7.1: Architecture of individuals when learning the perceptuo-motor correspondences.
They now are equipped with two neural networks: a perceptual network with input coming
from a model of the cochlea, and a motor network whose output feeds into a model of the
vocal tract. These two neural networks are interconnected via links that are arbitrary but
plastic, allowing the individual to learn to pass from one representation to the other.

neurons have output connections destined to send commands to the vocal tract’s control
system. They have preferred vectors corresponding to these output signals: their value
represents the relation between organs to be reached when they are activated at the same
time as a “GQO” signal is sent.

The two maps are fully connected; all the perceptual neurons are connected to all the
motor neurons through connections which propagate activations from the perceptual map
to the motor map. Each connection has a weight which initially has a random value close to
zero. The preferred vectors of the perceptual neurons, representing the value that maximally
activates each neuron, are also initially random, following a uniform distribution. The
preferred vectors of the motor neurons, representing the relation between organs to be
reached when they are activated, are also initially random and uniformly distributed.

To produce a vocalization, the mechanism is the same as before: neurons in the motor
network are sequentially and randomly activated. The activation of a motor neuron fixes an
articulatory target, which is a relation between organs to be reached. Then a control system
operates to reach each articulatory target in sequence, thereby generating a continuous
articulatory trajectory in organ relation space (this is still a polynomial interpolation). In
contrast with the previous chapter, We here use operational models of the vocal tract and
of the cochlea, which are fixed and the same for all individuals in a given simulation, and
which map an acoustic representation to each configuration of the vocal tract. This acoustic
representation will here be in terms of formants, as detailed below. The individuals in this
version exchange acoustic trajectories, no longer directly exchanging trajectories in organ
relation space, as in the earlier version.

The perception of a sound is also similar to the earlier version in algorithmic terms.
The perceived acoustic trajectory is transformed into a perceptual trajectory by a model of
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the cochlea. This perceptual trajectory will here be composed in two dimensions: the first
formant and the effective second formant, as explained below. This perceptual trajectory
is then passed to the temporal filter, which cuts it into little slices, corresponding to the
temporal resolution of the cochlea. Each little slice is averaged, giving a point value which
serves as a stimulus to the individual’s nervous system.

This stimulus first activates perceptual neurons. Their preferred vector is then modified
just as in the earlier version: they are modified in such a way that they are activated a little
more if the same stimulus is presented again immediately after, and this change is larger for
more activated neurons’.

Once the activation of the perceptual neurons has spread to the input connections of
the motor neurons, two cases arise. The first case is where the motor neurons are already
activated, because the vocalization was produced by the individual’s own babblings, and
here the connection weights are reinforced for connections between neurons whose activa-
tions are correlated, and weakened for connections between neurons whose activations are
decorrelated (this is Hebbian learning)2. The second case is where the neurons in the motor
map are not already activated. Here the activation of the neurons in the perceptual map
(when a vocalization by another individual is perceived) is transmitted via the connections
between the two maps and activates the motor neurons. Only a small amount of activation
can spread via connections with low weights, whereas those with high rates transmit much
more3.

Once the motor neurons are activated, their preferred vectors are modified as follows.
The preferred vector of the most activated neuron is taken as a reference, and the other pre-
ferred vectors are modified to bring them closer to this reference: the greater the activation
of a neuron, the larger the modification. The same formula applies to the preferred vectors
of perceptual neurons, the reference being equivalent to the perceptual stimulus.

When all the activities have been propagated and both the preferred vectors and the
weights modified, the process of relaxation of the two neural maps begins so that individuals
can categorize the vocalizations that they hear. This process is the same as that described
above, applied in parallel to the two maps. The population vector is computed from an
activation pattern of all the neurons in a map and then used as a new input, which produces
a new activation pattern. The process continues until the activation pattern becomes stable.

1The mathematical formula for the new activation function is:

_ 1 v, —s|?/c
tune; t1+1(s) = \/ﬂa'e‘ it+1—81%/

Vi t4+1 = Vit -+ 0.001.tunei’t(s).(s - vi,t)

where s is the stimulus and v; ;41 the preferred vector of n; after its activation by s.
2If ¢ is a neuron in the perceptual map and j a neuron in the motor map, then the weight w;,j of the
connection between these neurons changes according to the following formula:

dw; 5 = ca.(tune; s, — < tune; s; >)(tune; s, — < tunejs; >)
where s; and s; are the inputs for neurons ¢ and j, < tune; s, > the mean activation of ¢ during a time

interval T, and ¢z a small constant (here 0.01).
3The activation of the motor neurons is computed by the following formula:

—1y..8)2 /02
tune; ¢(s) = —A— x e~ 2(Vi8)7/0
o

V2T

where s is the activity vector for the neurons in the perceptual map, and v; the connection weight vector
upstream of neuron ¢ in the motor map.
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This corresponds to a behaviour of categorization.

In this new architecture, the crucial feature of the coupling of production and perception
is retained: the distribution of preferred vectors of perceptual neurons evolves in parallel
with the distribution of preferred vectors of motor neurons. If at a given moment all the
sounds associated with articulatory configurations coded by the preferred vectors of motor
neurons are produced, and these sounds are transformed by the bias of the model of the
vocal tract and of the ear into a perceptual representation, then the distribution of points
obtained is roughly the same as the distribution of preferred vectors in the perceptual neural
map. Conversely, if the distribution of sounds that an individual hears changes, this will
affect both the distribution of preferred vectors in their perceptual map and in the motor
map. This coupling between the motor map and the perceptual map has again an important
dynamical consequence: the individuals will tend to produce more vocalizations composed of
sounds that they have already heard. Said another way, when a vocalization is perceived by
an individual, this increases the probability that the sounds that compose this vocalization
will be re-used by the individual in its future vocalizations. Initially, as in the previous
chapter, the preferred vectors are all random and uniformly distributed. This means that
the vocalizations produced are specified by articulatory targets spread uniformly throughout
the continuous space of possible targets. The space is thus not yet discretized; there is no
phonemic coding. In addition, the initial situation is in an equilibrium state as all the
individuals produce sounds composed of targets following the same distribution and adapt
themselves to approximate the distribution of sounds that they hear. We will see, however,
that here again random fluctuations will break this symmetry and push the individuals away
from this equilibrium towards another organized state.

Using two neural maps not only illustrates how the articulatory function can be learned,
but also and above all accounts more realistically than the previous chapter for the con-
straints due to the non-linearities of this articulatory function. Indeed, the earlier version
of the model used an abstract articulatory synthesizer to generate the initial distribution
of preferred vectors. Here an articulatory synthesizer will be used throughout the whole
simulation and the bias will be directly applied by the synthesizer to the neural maps.
Recall at first that there are articulatory configurations for which small changes produce
small changes in the sound produced, as well as articulatory configurations for which small
changes produce large acoustic changes. When the neurons in the motor network have ran-
dom uniformly distributed preferred vectors, this distribution will be quickly biased: the
non-linearities cause the adaptation of neurons to happen in a heterogenous way. For cer-
tain stimuli, many neurons will have their preferred vectors substantially modified, while
for other stimuli, only a few neurons will have their preferred vectors modified substantially.
This leads rapidly to non-uniformities in the distribution of the preferred vectors of the
motor neurons, with more neurons in the regions where small articulatory changes produce
small acoustic changes than in the regions where small articulatory changes produce large
acoustic changes. Consequently, the distribution of the articulatory targets of vocalizations
also becomes biased, and learning by the neurons in the perceptual network results in the
preferred vectors of these neurons also being biased.

7.1 Articulatory synthesizer

This version of the system uses a realistic model of part of the function mapping sounds
to relations between organs, and of the function mapping percepts to sounds. This model
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corresponds to the subsystem of the human vocal tract that enables us to produce vowels.
It was developed by de Boer (de Boer, 2001).

The model uses a 3-dimensional articulatory space, each dimension representing a rela-
tion between organs: tongue position (place of articulation), tongue height (manner) and
lip-rounding. The position of each articulator has values between 0 and 1, and a triplet of
values ar; = (r, h,p) defines an articulatory configuration. From each point in this space,
following de Boer’s model, the first four formants corresponding to the vowel sound produced
can be calculated: these are the frequencies of peaks in the energy spectrum (or poles in the
function transforming articulatory configurations into acoustic waves). This calculation was
modelled by a polynomial function generated by interpolation between points of a database
(Vallee, 1994) representing vowels with their articulatory configurations and the associated
formants (de Boer, 2001).

Next, we use a model of the cochlea summarizing the information that it sends to the
brain when vowel-like sounds are heard. As in the previous chapter, vocalizations are
still complex and dynamic. One uses again the temporal resolution filter which splits the
continuous acoustic four-dimensional (F1, ..., Fy) trajectories into a sequence of points which
are then fed into the cochlea model which then computes a perceptual representation. This
model, used by Boé and his colleagues and by de Boer (Boé€ et al., 1995; de Boer, 2001),
calculates a 2-dimensional representation from the first four formants. The first dimension
is the first formant, and the second dimension is called the effective second formant and is
a non-linear combination of formants Fy, Fy and Fy (de Boer, 2001)%.

7.2 Dynamics

The simulations described here have the same structure as the earlier simulations: a dozen
individuals wander randomly in a virtual space, and from time to time produce a vocaliza-
tion, which is heard by themselves and by the nearest individual®.

To visualize the state of an individual’s neural system, the representation of that indi-
vidual’s perceptual neural maps can be used. In effect, these maps are of two dimensions
(first formant and effective second formant) and contain after convergence the same infor-
mation as the motor networks regarding distributions. An individual’s perceptual network
is represented in two ways: by showing all the preferred vectors and by showing the dynamic
categorization landscape linked to the coding/decoding cycle by the population vector.

Figure 7.2 shows the perceptual maps of two individuals after 200 interactions. This
allows us to visualize the bias due to the articulatory synthesizer. The unit of measurement
is the Bark: the horizontal axis represents the first formant, and the vertical axis the effective
second formant. The distribution of preferred vectors is no longer uniform. It is contained
within a triangle (the vowel triangle), which is itself covered non-uniformly. The initial
situation is an equilibrium, since all the individuals have the same uniform distribution of
preferred vectors, but this distributional bias is now added to the natural fluctuations in
the system to create non-uniformities which are amplified by a positive feedback loop. The
individuals, as in the previous chapter, “crystallize” in a new situation where the preferred
vectors of their neurons are grouped in clusters, which define phonemic categories. Figure

4The formants are also expressed in Barks, which are approximately a logarithmic transformation of
measures in Hertz. These formulae model the fact that the human ear cannot discriminate narrow band
frequency peaks in the high frequencies (Carlson et al., 1970).

5Each of their neural maps has 500 neurons, and o = 0.15 (this is the width of the Gaussian defining
their activation function, and is equivalent to 15 percent of the extent of each dimension).
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Figure 7.2: The perceptual neural maps of two individuals 200 vocalizations after the start. The
upper panels show the preferred vectors and the lower panels show the basins of attraction that
they define. It can be seen that the constraints due to the use of an articulatory synthesizer very
quickly bias the initial distribution of preferred vectors: they are spread non-uniformly in a triangle
(the vowel triangle).

7.3 shows the two individuals of the previous figure 2000 vocalizations later. Figure 7.7
shows the evolution of the similarity between the preferred vectors of the 10 individuals
compared pairwise. This is roughly constant, which shows that they all have the same
distributions of preferred vectors (as each other) over the course of the simulation, and in
particular the same clusters after 2000 interactions. The fact that the distributions converge
also indicates that they have learned to master the articulatory function.

Just as in the previous version, each simulation produces a unique system of phone-
mic categories (here vowels). Figures 7.4, 7.5 and 7.6 give other detailed examples of the
systems that can be obtained in the simulations. Figure 7.8 gives further examples of con-
figurations of the basins of attraction of the acoustic maps obtained in different populations
of individuals. Now, as also explained, statistical regularities characterizing the phoneme
inventories can appear at the same time as this diversity exists. As a realistic articulatory
vowel synthesizer is used, and as precise databases of statistical regularities are available
characterizing the vowel inventories of human languages, it becomes possible to a make
comparisons between the vowel systems generated by the model and those of humans.
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Figure 7.3: The neural maps of the two individuals of the previous figure 2000 vocalizations
later. It can be seen that shared clusters have formed in both individuals, defining a particular
categorization system shared by both individuals. The system shown in this figure is the system
most often obtained in the simulations. It is also the most frequent in the languages of the world.
It is the five-vowels /i,u,e,0,a/ system.

The database of human languages which is used is UPSIDs17; (UCLA Phonological
Segment Inventory Database), developed by Maddieson (Maddieson, 1984). It contains 317
vowel systems, belonging to 20 different language families, chosen for representativeness in
terms of geography and population genetics (see Figure 7.9). Each vowel system consists of a
list of vocalic segments said to be “representative”. In fact, in a single language, and even in a
single person, a vowel can be pronounced differently depending on the preceding or following
phonemes or on the rhythm of the utterance (these are co-articulation phenomena). The set
of pronunciations of a phoneme is called the set of allophones of this phoneme. To represent
a phoneme by a single point in UPSID, the most frequent allophone is chosen. Moreover, the
segments of this database are not directly used: instead, regularities are identified according
to the groupings made by Schwartz, Bog, Vallée and Abry (Schwartz et al.,1997b). In fact,
no two languages exist with exactly the same vowel prototypes (for example, two languages
can have slightly different ways of pronouncing [e]). The method used, which turned out
to be efficient for setting out regularities, is similar to that used by Crothers (Crothers,
1978). It consists in grouping vowel systems according to the relative positions of vowels
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Figure 7.4: Another example of a system that can be obtained. This is a six-vowel system.

with respect to each other rather than according to their absolute positions. Also, vowels
are represented in the acoustic space (Fy, FZ/), in the same way as they are represented in the
perceptual maps in the simulations. Figure 7.10 shows the set of possible patterns used in
this classification: black circles on the vowel triangle represent possible phoneme locations.
There are 12 possible locations, which makes more than 4 million possible vowel systems of
less than 8 vowels. Since we are interested in the relative positions of phonemes, small shifts,
rotations and scalings are permissible in the process of matching particular vowel systems to
generic patterns of vowel systems. Another abstraction from the UPSID database used as
a basis of comparison is the number of systems with 2 vowels, 3 vowels, 4 vowels, etc. This
measure is inherently much more direct than going by the structures of the vowel systems.

Five hundred simulations were run, all with the same parameters. Each time, the number
of vowels in the inventory and the relative positions of the vowels were recorded. This second
measure was done by hand, which appears to be the most precise method, also used by de
Boer (de Boer, 2001) to compare the vowel systems generated by his simulations with those of
human languages. Here, to determine the number and location of vowels, the representation
of the attractor landscape, which models individuals’ categorization behaviour, is used.
This is more efficient than looking at the distribution of preferred vectors in the perceptual
maps, because clusters are sometimes difficult to visualize due to rare neurons with preferred
vectors with values far from these clusters. In addition, the categorization representation
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Figure 7.5: Another example vowel system.

directly gives a prototype for each category, the attractor point of the coding/decoding cycle
of the population vector.

The results are given in Figures 7.11 and 7.12. Figure 7.11 shows that the sizes of vowel
systems in human languages and those of the populations of individuals are very similar.
In particular, they are characterized by a maximum of 5 vowels. Figure 7.12 shows the
distribution of vowel system structures in human languages and in the systems generated
by the individuals. Only the two most frequent systems are represented in each case, up to
8 vowels. Despite the enormous space of possible systems, the two most frequent systems
are the same for n=3,6, and the two most frequent systems in humans are in the three most
frequent artificial systems for n=4,5.7. If we consider percentages, we also see a degree of
correspondence. The prediction for the most frequent vowel system /i,u,e,0,a/ is 25 percent,
as against 28 percent in UPSID. The human systems represented in the figure correspond
to 59.5 percent of the systems in UPSID, and the artificial systems in the figure are 75.6
percent of the total of artificial systems generated. This shows that the relationship between
frequent systems and more eccentric ones is roughly followed. It also shows at the same
time the diversity of the systems generated. By contrast, the predictions of the simulations
deteriorate for systems of more than 7 vowels, because these are not generated at all, while
they do exist in humans (but are certainly less frequent).

Given the enormous number of possible vowel systems, the similarities between the
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Figure 7.6: Another example vowel system.

human and artificial systems are striking. Moreover, the diversity of the systems is obtained
without any changes in parameters between the simulations.

The differences between the predictions and the human systems should be interpreted
in the light of the way the UPSID systems and the artificial systems were constructed. In
fact, as explained in previous chapters, the models we discuss deal with the formation of a
speech code before it was recruited for purposes of communication. That is to say that the
generated systems are pre-linguistic systems which have not yet undergone cultural evolution
under the functional pressure of linguistic communication. By contrast, the UPSID systems
are vowel systems of contemporary languages. They are vowel systems which have evolved
under functional pressure for effective communication regarding a large and open set of
referents, and this evolution has already been going on for a very long time. To summarize,
the simulations we have described are based on mechanisms modelling vocal exploration
processes that are prior to the mechanisms that gave rise to the modern languages in UPSID
(the first kind of mechanism operated at a time before complex communication appeared,
whereas the second operated long after the dawn of language). The similarities and the
differences between the structures of the two systems are therefore interesting, but their
significance should not be exaggerated.
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Figure 7.7: Evolution of average entropy of individuals’ distributions of preferred vectors in one
simulation, and evolution of the average kl-distance between individuals’ distributions compared
pairwise. The entropy curve shows the formation of clusters. The kl-distance curve shows that all
individuals’ clusters are the same (it rises a little, but this variation is negligible, given that the
kl-distance between two random distributions of five clusters is of the order of 10°).
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Figure 7.8: Further examples of vowel systems that can be obtained. It can be seen that both the
number and the shapes of the basins of attraction are varied, although the simulation parameters
remain unchanged.
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Figure 7.9: The UPSID database contains 317 vowel systems belonging to 20 different language
families. Adapted from (Escudier and Schwartz, 2000).

=

Figure 7.10: The patterns with which each generated system has been identified are combinations
of the locations shown in this figure. There are 12 locations, making the number of systems with
less than 8 vowels exceed 4 million. Note that here the same notation as Schwartz, Bo&, Vallée and
Abry (Schwartz et al., 1997) are used, with the horizontal axis corresponding to the first formant
and the vertical axis to the effective second formant, but with the high values at the bottom and
the lower values at the top (the axis switches direction in relation to the figures given earlier).
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Figure 7.11: Distributions of sizes of vowel systems obtained in the simulations and in the
languages of the UPSID database.
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Figure 7.12: Distribution of vowel inventories obtained in the simulations and in the human
languages of the UPSID database. The notation is the same as in Figure 7.10.
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Chapter 8

Origins of the Syntax of Sounds

In the models described in the two previous chapters, the individuals produced vocalizations
whose articulatory targets were chosen randomly from the repertoire defined by the neural
networks. We saw how this repertoire of articulatory targets could self-organize, passing
from a quasi-continuum to a set of discrete phonemes. We also saw that because the num-
ber of these discrete articulatory units (phonemes) was small compared to the number of
vocalizations an individual could produce in its lifetime, there was necessarily systematic
re-use of these phonemes in composing the vocalizations. By contrast, there was no organi-
zation to the specific ways in which these phonemes were sequenced — it was random. This
means that individuals could produce all possible sequences of phonemes in their repertoire.

However, the sound systems used by humans, as explained in Chapter 2, organize very
strictly the ways in which phonemes can be combined. In particular, every language only
allows certain sequences of phonemes, and not others. For example, in English “spink”
is a possible word, while “npink” or “ptink” are impossible. In Tashliyt Berber the words
pronounced [tgzmt] et [tkSmt| are allowed, but they are impossible in French. Each language
is not only a code defining a shared inventory of phonemes, but also a code defining a
shared repertoire of possible combinations of phonemes. An essential unit of combination in
Linguistics is the syllable, defined as a vocalization produced during one oscillation of the
jaw (McNeilage, 1998).

The inventories of syllables permitted in the world’s languages therefore have organiza-
tion, in the sense that there is structure in the set of permitted phoneme combinations. A
syllable comprises a certain number of locations, such as the “onset”, the “nucleus” and the
“coda”, where in many cases only certain phonemes can occur. There are languages such as
Japanese where syllables can contain only two phonemes: consonants can only occupy the
first position and vowels in the second position (these syllables are termed “CV”). Some-
times it is groups, or clusters, that can occur in certain locations only. So the repertoires
of syllables in human languages are organized according to patterns (e.g. CV, CCV). The
term “phonotactics” is used to refer to these rules of syntax. Certain patterns are statisti-
cally preferred over others across the world’s languages. For example, all languages allow
syllables of the type CV, while many do not allow consonant clusters at the beginnings of
syllables.

In this chapter, we will show how an extension of the model presented in Chapter 6
not only enables shared discrete phoneme inventories to appear, but also shared syllable
repertoires organized in patterns according to rules governing the syntax of sounds. We will
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also show how certain patterns can be statistically preferred when articulatory and energetic
constraints are introduced.

8.1 Self-organized death of temporal neurons

Instead of selecting articulatory targets by an algorithm that randomly activates neurons
in the motor map, which can be seen as a “spatial” map, a map of “temporal” neurons will
carry out this task. That is, to the neural map modelling relations between organs (the
spatial map), one adds a neural map modelling sequences of articulatory targets (that is,
sequences of activations of neurons in the spatial map).

These temporal neurons are each connected to several motor/spatial neurons. They
can both send and receive signals through these connections. These neurons are temporal
because their activation function has a temporal dimension: their activation does not depend
solely on the amplitude of activation of the spatial neurons to which they are connected,
but also on the order in which they are activated. Thus, when they receive signals from
the spatial map, their activation is calculated from the temporal evolution of the activity of
the spatial neurons'. This activation mechanism is such that each connection has a weight
that varies over time according to a Gaussian function, and that at any time the temporal
neuron is the sum of the activations of the spatial neurons to which it is connected, weighted
accordingly. The activation of the temporal neuron after a vocalization is the sum of all the
weighted sums obtained during perception.

The spatial neurons to which a temporal neuron is connected determine the articulatory
targets of the sequence coded by the temporal neuron. The activation of a temporal neuron
results in the activation of its connected spatial neurons according to a temporal pattern.
Here the temporal pattern will be regular, first activating a single neuron corresponding to
the first articulatory target, then a second neuron corresponding to the second articulatory
target, then a third, a fourth, and so on. The simulations will here in fact use only two
articulatory targets per vocalization: each temporal neuron will therefore be connected to
only two spatial neurons. This will make the temporal map easier to represent visually.

Initially, a large number of temporal neurons are created (500, compared with 150 neu-
rons in the spatial map), and these are connected randomly to the spatial map with random
values of their internal parameters. Using so many neurons means that a large part of the
space of possible combinations can be covered. Unlike the neurons in the spatial map, that
behave like in Chapter 6, the properties of temporal neurons do not change over time. So,
for the moment, the presence of these neurons has no impact on the simulation in Chapter 6:
vocalizations are still composed of arbitrarily selectable articulatory targets. An additional
mechanism is therefore required in order to achieve the goal that we have set ourselves in
this part.

This mechanism is inspired from apoptosis, or programmed cell death in the human
brain (Ameisen, 2000), and fits with the theory of neural epigenesis developed by Changeux

1The mathematical formula for computing the activation of a temporal neuron 3 is:

S= ST s~ Ntarget 1 [t=T;|%/0® _1_  |tune;|?/o?
tuneTemporel; = 37, > 051 ez R ot i
with T denoting the duration of the received signal (i.e. the duration of the perceived vocalization), Ntarget
the number of spatial neurons to which it is connected, T; a parameter which determines when the temporal
neuron ¢ is sensitive to the activation of the spatial neuron j, and tune; ; the activation of the spatial neuron
j at t.
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and Danchin (Changeux and Danchin, 1976). The theory basically proposes that neural
epigenesis consists of an initial massive generation of random neurons and connections, which
are afterwards pruned and selected according to the level of neurotrophins they receive.
Neurotrophins, which block an automatic suicide system of neurons, are above all generated
and provided to neurons that are sufficiently activated. Stimulated neurons survive, while
the the others die. This phenomenon has sometimes been called “activity-dependent growth”
(Ooyen, 2003).

This principle of generation and pruning is applied to the temporal neurons, depending
on their mean activity level?>. The vitalThreshold constant defines the level of activity
below which the neuron is pruned. This threshold remains the same for all neurons in the
map. The pruning process does not begin immediately after the creation of the cell, but
after a few dozen vocalizations, when the mean activity level has had time to stabilize a
little.

8.2 Dynamic formation of patterns of combinations

A population of 5 individuals interacts in the same way as in Chapter 6: they are located
randomly in a virtual environment, and at random moments produce a sound by random
activation of a neuron in their temporal network. The nearest individual, and the vocalizing
individual itself, hear the vocalization and update the neurons of their two networks.

We will make the same assumptions as in Chapter 6 concerning the nature of the spaces
involved and their dimensionality. Again, we assume that the individuals can pass from the
acoustic space to organ relation space, and also between organ relation space and the space of
muscular activations. So our focus here is only on organ relation space. Moreover, as at the
beginning of Chapter 6, a 1-dimensional organ relation space will be used. This will make it
possible to visualize the neurons in the temporal map: since they are only connected to two
neurons in the spatial map, they are defined by two values (two 1-dimensional articulatory
targets), and thus by a point in a 2-dimensional space. Figure 8.1 represents the networks
of two individual at the beginning of a simulation. Both the horizontal and vertical axes
represent organ relation space. The points on the two axes are the preferred vectors of
the neurons of the spatial map. Thus the same points occur on both axes. Then the
points in the body of the plotted space represent neurons of the temporal map. Each one
has an X and a Y value at one of the preferred vectors of the spatial neurons: the value
on the horizontal axis corresponds to the first articulatory target coded by the temporal
neuron, and that on the vertical axis corresponds to the second articulatory target coded
by the temporal neuron. The figure shows that the set of temporal neurons covers just
about all the continuous space of possible combinations defining of vocalizations. The little
areas around each point represent the average activation level (here initial) of the temporal
neurons. The larger the area, the higher the level of activation (it is initially the same for
all neurons).

2The mean activity of a temporal neuron j is computed with the formula:

<tuneTemporel; >*(window— 1)+tuneTempoTelj
window

< tuneTemporel; >=

where < tuneT'emporel; > represents the mean level of activity and tuneT'emporel; the last activity level
observed following the perception of a vocalization. This mean activity level is computed in such a way that
it is not necessary to memorize the previous activity levels. The value of window is 50, and the initial value
of tuneT'emporel; is equal to 2 * vitalT hreshold.



110 CHAPTER 8. ORIGINS OF THE SYNTAX OF SOUNDS

second target in

organ relation space AGENT 1 AGENT 2
1' T T T T T T T T T 1'2 T T T T T T T T T
P LSRG L B T fe Faxmen o s s oge
ex x Fix Y ¥ *'l’;'!' ** figt 2 Pl L S R S L R T .
0.8 fra s =® a® " R oz 3 z Kl 0.8, =z x % =g xx ¥z i'!. =7
F g2, =% lg.“{ - ’.tl 2 =z 2 Tgx ¥ am P - ogs
:.I aw o X% ‘t. Py = 'f" i b | l:i % Faai .‘ P = . o=
064 X% o F e el A A e 0685 a% o8B * 2%, = , = § 4 & &
“’lf - = u‘}'l;{ & 3 ' = Tdcyx Xx XX 3@ £3 Ty wmax gy .1.
S 2%, X N B 'w‘. * :k* “:: == 5 By 2 "”f'li "
0.4 -:'.!"‘ =' % = .3‘ oz o § '1! =1 04 F e | = l:i‘? ‘:l x ¥ ‘:. E
‘.l LR g s * 3k ’! " =% '.k 3 y o
02 & I' x z. = .?l o s Ex ..l_ 0.2 ‘:‘ dxr 2 .“f l=- !’3:} = : :_
Ll =z =2 =z 3 x EXE S s z = .=
B L PR P SN Wl 15 L B ek
—0.2 1 /u 1 [ ! 1 I 1 1 1 —0.2 1 1 1 1 1 1 1 1 1
0| 0¥ 02 03 04 05 06 0.7 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
first target
. in organ relation
representation space
preferred of temporal P
Vectors  peurons and initial
of . activity level
spatial
neurons

Figure 8.1: The two neural maps of two individuals at the beginning of the simulation: the spatial
map (whose preferred vectors are represented by points on the axes), and the temporal map (whose
neurons are represented by little areas).
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Figure 8.2: Tllustration of the sort of temporal map obtained if the elimination mechanism for
temporal neurons is not used. The rectangle on the right shows the maps of another individual
chosen at random from the population.

Before presenting the results yielded by the generation/elimination dynamic of the tem-
poral neurons, Figure 8.2 shows what happens if no neurons at all are eliminated. It shows
an individual’s map after 1000 interactions in a population of 10 individuals. Here, as in the
simulations presented in the previous chapters, a clustering appears in the spatial map. As
far as the temporal neurons are concerned, we observe that they cover all the mathemati-
cally possible combinations of two phonemes (whose categories are defined by belonging to
clusters). There is thus no constraining principle affecting the combination of phonemes,
thus no phonotactics, and even fewer patterns.

Figure 8.3 now shows what is obtained if elimination of insufficiently activated neurons is
implemented. Here we have the networks of two individuals, taken randomly in a population
of 10 interacting individuals, after 1000 interactions. Note first that the neurons in the
temporal map no longer cover all the possible combinations. Furthermore, they cover the
same combinations in both individuals. This implies that the vocalizations they produce only
exhibit certain phoneme combinations and not others, and that the rules of combination are
shared: thus we observe the appearance of culturally shared phonotactic rules. These rules
are different for each simulation, and therefore diverse. Figure 8.4 gives another example of
a result.

A second observation might be made concerning the organization of temporal neurons
surviving in the space of combinations that they encode (that is, in the space represented
in the figure). The combinations appearing after several hundred interactions are not dis-
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Figure 8.3: If the pruning mechanism on temporal neurons is used, this is the kind of pattern
obtained at the end of a simulation. On the one hand, note that not all phoneme combinations
are represented in the temporal map, and thus the individuals only produce those combinations
for which they have temporal neurons. On the other hand, the possible phoneme combinations are
organized in patterns: rules of sound syntax have emerged through self-organization.

tributed randomly among those that are possible. They organize themselves into rows and
columns. For example, in Figure 8.4, there are two columns and one row. If the phonemes
associated with the eight clusters of the spatial map are labelled pq, ps, ..., ps, as indicated
in the figure, then the syllable repertoires of these individuals can be summarized as (pg, *),
(ps, *) et (x,p7) where x is a ‘wild card’ meaning ‘any of the phonemes pi,...,ps”. The
repertoire is thus organized in patterns, just as the repertoires of human languages can be
summarized using patterns (Japanese, for example, is encapsulated in the patterns “CV” |
“CVC” and “V(C7).

The formation of shared repertoires, and also the formation of patterns, is the result
of a dynamic of competition and cooperation among temporal neurons. In fact, the vital
threshold for these neurons was chosen so that in the case of Figure 8.2, where there are
temporal neurons for all combinations, the frequency with which each combination is pro-
duced would be too weak to raise them above the critical activation level. Imagine that
the initial situation in the simulation is that in Figure 8.2 where the clusters have already
formed in the spatial network. In other words, imagine that we disengage the dynamic of
the spatial neurons from that of the temporal neurons. In that case, every neuron has an
initial activation level (M A; o = 2.vitalThreshold) twice as high as its vital threshold level.
This vital level was fixed to be higher than the average activation level generated by this



8.2. DYNAMIC FORMATION OF PATTERNS OF COMBINATIONS 113

second target in organ

relation space AGENT 1 AGENT 2
1 T T T T T T T T T 1 T T T T T T T T T
09 £ ! 4 09 i ! 4
08 [ sttt w8 2% | 1 ]
0.7 I 0.7 F 3 } 4
0.6 0.6 F 4
0.5 i 05k i ; |
0.4 04l i |
0.3 0.3 .
02 ; 02 f 3 i d
0.1} 0.1} ]
0 0 TR S i
0 0.6 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

first target in
organ relation space
preferred representation of

vectors temporal neurons

Qf NEUrons  with their activity level
in spatial

map

Figure 8.4: Another example of a phonotactic system generated by a population of individuals
using the pruning mechanism.
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Figure 8.5: Evolution of the number of surviving temporal neurons in the simulation which
generated the system in Figure 8.3. At first a phase is seen in which a certain number of neurons
die, and then there is a stabilization phase in the system during which the remaining neurons
succeed in surviving.
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Figure 8.6: Evolution of the number of surviving temporal neurons in the simulation which
generated the system in Figure 8.4. We can observe that here the two individuals do not possess
exactly the same number of surviving neurons: this is due to the intrinsic stochastic nature of
the system. Nevertheless, as Figure 8.4 indicates, they share the same phonotactics and the same
patterns.

initial configuration. As a consequence, the mean level of activity of all neurons is going
to decrease at the beginning of a simulation. Because there is natural stochasticity in the
system, due to the random choice of temporal neurons when vocalizations are produced and
the not quite equal sharing of neurons in the clusters of the spatial maps, these activation
levels will not all decrease at exactly the same rate. In particular, some neurons will get
below their vital level before others, and therefore die. The survival of a neuron in a cluster
of an individual’s temporal map depends in part on the number of neurons corresponding to
the same combination in other individuals, whose survival itself depends on the density of
the cluster in question in the first individual. This creates positive feedback loops with the
result that when by chance a certain number of neurons die in an individual’s cluster, this
facilitates the death of corresponding neurons in other individuals. In the same way, healthy
clusters (meaning that they have many neurons with high activation levels, which prolongs
their effectiveness) will facilitate the survival of corresponding neurons in other individuals.
In this way, the interaction of forces of competition and cooperation takes advantage of
fluctuations to lead the system into a stable state where the no more cells are dying. In this
state each neuron ends up with an activation level higher than the vital level. Figures 8.5
and 8.6 show the evolution of the number of surviving neurons within the temporal maps
of two individuals from simulations whose outcomes are shown in figures 8.3 et 8.4. There
is a clear separation between the phase of neuron death and the stabilization phase.
Mutual reinforcement among neurons does not only take place between neurons of clus-
ters corresponding to the same phoneme combination in different individuals. It can also
occur between clusters sharing only one phoneme at the same place in a vocalization. We
described above how a temporal neuron is activated: computation on the sum of local
similarities between signals (filtered by a Gaussian function) is continuous. Let us denote
p1, p2, p3 and py four distinct articulatory targets belonging to four distinct clusters. If
the similarity of two vocalizations with the same sequence of phonemes is about 1, then
the similarity between the vocalization coded by the sequence (p1,p2) and the vocalization
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coded by the sequence (p1,ps3) is about 0.5, and the similarity between (p1,p2) and (ps, pa)
is about 0. This means that the level of activity “provided” to the temporal neurons of
a cluster ¢l thanks to two clusters of temporal neurons in other individuals which share
exactly one phoneme in the same location, is about the same as the level of activity pro-
vided to the neurons in ¢l thanks to the cluster in other individuals which corresponds to
temporal neurons sharing all the phonemes in the right location with those in ¢l. As a
consequence, groups of clusters reinforcing each other will form during the self-organization
of the temporal neuron map through positive feedback loops. These are the lines and the
columns that we saw earlier. This explains why we observe the formation of phonological
patterns in the individual’s repertoire of syllables. To summarize, the interactions between
competition and cooperation among individual clusters explains the formation of shared and
stable repertoires of allowed phoneme sequences, while the interaction between competition
and cooperation between the “lines” and the “columns” of clusters explains the formation of
phonological patterns.

8.3 Role of articulatory and energetic constraints

With the mechanism presented in the previous sections, if a large number of simulations
are run, there will be no statistical preferences for localization of either temporal neurons
or spatial neurons. This is similar to the simulation without articulatory bias in Chapter 6
in which the clusters had as much chance of appearing at one spot in organ relation space
as at another.

Asin Chapter 6, we will see here how an articulatory bias can introduce preferences. This
articulatory bias, modelling nonlinearities in the function mapping sounds to articulatory
configurations, will be modelled through the initial distribution of preferred vectors. The
initial distribution of preferred vectors of the spatial map will be similar here to the initial
distribution of preferred vectors in the simulation with articulatory bias of Chapter 6: the
density of preferred vectors will increase between 0 and 1. This means that initially there
will be a higher density of preferred vectors closer to 1, and the lowest density will be near
0. Figure 8.7 gives two examples of the initial distribution of preferred vectors.

One can consider another bias introducing energetic constraints. In a human, for ex-
ample, each vocalization calls for the displacement of a certain number of organs, and this
displacement costs energy: some vocalizations are easier to pronounce than others from the
point of view of the muscular energy expended. Moreover, several researchers (Lindblom,
1992; Redford et al., 2001) have already proposed that energetic cost is an important con-
straint in the formation of the sound systems of human languages. This constraint will
be modelled here by assigning each vocalization an energy cost, to be defined, which will
influence the level of neurotrophins received by the neurons coding for them (thus, at equal
frequency, a neuron coding for an easily pronounced syllable will receive more neurotrophins
than a neuron coding for a syllable that is hard to pronounce, and thus will have a greater
chance of survival). The combination of these two constraints will enable us to show how
the interaction of two different biases can lead to the formation of repertoires of syllables
with structures whose statistical properties are not deducible from any single bias on its
own.

The energy cost associated with a vocalization is defined by the displacement of the
vocal organ from a position of rest fixed as coded by point 0 in organ relation space. The
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Figure 8.7: Example of the initial distribution of preferred vectors in the spatial maps of two
individuals, biased by articulatory constraints. At the start there are more neurons coding for
articulatory configurations close to 1 than neurons coding for articulatory configurations close to 0.

most distant position from this is coded by 13. This energy will influence the survival of
the temporal neurons. Whereas previously the survival of temporal neurons depended only
only on their level of activity, here a term corresponding to the energy is added. This term
does not directly represent the energy, but ¢; — energy, thus giving a low value when a lot
of energy is expended (and the neuron therefore receives fewer neurotrophins), and a high
value when not much energy is expended. The constant c; is chosen such that on average
the activity and energy terms are of the same order of magnitude?. The vital threshold is
once again set quite low so that not all temporal neurons can survive.

Figure 8.8 shows the initial temporal map of two individuals, with the initial levels of

neurotrophins of the different neurons.

Only 150 neurons randomly chosen from among
the 500 are depicted so that the disparity in densities can easily be seen. The segments
here are shown with their initial values. Only 150 randomly chosen temporal neurons are

3To calculate the energy expended, the articulatory trajectory is discretized and the sum of all the
distances between the points on this trajectory and the resting position is calculated. If p; and ps are two
phonemes used as articulatory targets in a vocalization, and p1, Pinty  Pints s ---> Pint 51 » P2 are the successive
points in the trajectory generated after interpolation, then the energy expended is:

e(p1,p2) = Py + Plngy +Pingy T+ Pinen_, TP

4The level of neurotrophins received by each neuron j is thus

level(j) =< tuneTemporal; > +(c1 — energy(j))

With 150 neurons in the spatial map, 500 neurons initially in the temporal map, the same Gaussian param-
eters that were used at the beginning of this chapter and a discretization of the articulatory trajectory into
10 points to compute the energy, we use c¢; = 15 and vitalThreshold = 0.03.

1
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Figure 8.8: Example of biased initial temporal neural map: the segments associated with the
temporal neurons show the initial level of neurotrophins of these temporal neurons. We observe
that temporal neurons close to (0,0) have the largest initial level of neurotrophins, but that the
temporal neurons close to (1,1) are more numerous and so will be activated more often initially,
which means that they will receive more activity-dependent neurotrophins than those close to (0, 0).

represented here rather than all 500, so that the disparity in densities can be seen clearly.
The segments on each neuron represent their initial level of neurotrophin. This initial value
is not the same for all neurons because it is computed with an initial value for mean activity
that remains fixed® and an energy value which varies with each temporal neuron. A look
at Figure 8.8 shows that there are more temporal neurons in the top right, but that those
in the lower left have a lower energy cost, and therefore receive more neurotrophins at
the same level of activation. There are thus two forces, each favouring the survival of one
corner of the space to the detriment of another. If there were no energy cost, as in Chapter
6, a statistical preference for clusters of spatial neurons close to 1 would appear, leading
automatically to a statistical preference for clusters of temporal neurons in the upper right
quadrant. Likewise, if only neurons corresponding to vocalizations which do not use much
energy were to survive, there would be a statistical preference for temporal clusters in the
lower left. The combination of these two forces will give a different statistical preference.
To evaluate this 500 simulations were run. Figure 8.9 thus represents the set of surviving
temporal neurons after 500 simulations. There is a clear statistical preference for neurons
located in the centre of the space, and not at the edges.

From a qualitative point of view, these statistical preferences have structural similarities

5The initial value for mean activity is 0.02
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Figure 8.9: Distribution of surviving temporal neurons in 500 simulations. The self-organized
repertoire of syllables re-uses mainly elementary articulatory configurations in the centre of the
space, reflecting a compromise between constraints due to nonlinearities and the articulatory cost
of vocalizations.
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with those found in human languages between various syllable repertoires: human languages
prefer CV syllables over CVC syllables, which are in turn preferred over CC syllables, then
CCV, then CVVC/CCVC/CVCC. Unlike in the simulations in chapters 6 and 7, where it
was possible to model realistically the articulatory constraints related to the production
and perception of vowels and thus create a direct parallel between the model and human
languages, no model exists that is both realistic and capable of being simulated efficiently
enough in the context of full syllable production. This is why the model presented in this
chapter has not attempted to model carefully any particular physiological constraints. It
was nevertheless shown, as in Chapter 6, how populations of individuals might generate
speech systems having qualitative structural similarities to human languages.
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Chapter 9

Evolutionary Scenarios: Speech
Codes Emerging from Babbling
and Adaptive Vocal Imitation

In the previous chapters, we have described mechanisms enabling a population of artificial
individuals to develop spontaneously a system of vocalizations that had human-like proper-
ties (cultural sharing, discreteness, combinatoriality, syntax of sounds). These models were
built on several assumptions, in particular concerning the cognitive and neural architecture
of individuals. We will now discuss these assumptions in relation with evolutionary scenarios
that could explain aspects of the origins of speech.

First, we will argue that the neural models we used share general functional correspon-
dances with human neural systems, both in terms of architecture and plasticity. This is
made possible by the fact that they are abstract and generic. Indeed, they are not models
of the physiology of biological neurons, but rather models of certain functions of structures
encountered in biological brains. Thus, the neural models presented so far constitute a math-
ematical formal language to model these functions. They are also compatible with several
families of models of the physiology of neurons elaborated in computational neuroscience
(Arbib, 2005). This kind of model can be reformulated using another formal language, that
of Bayesian probabilities, often used to model brain functions (Knill and Pouget, 2004),
and like Moulin-Frier, Schwartz, Diard and Bessiére have achieved in other work on the
morphogenesis of speech (Moulin-Frier et al., 2008, 2015).

Second, we will study in what ways these models can illuminate the problem of the origins
of speech, using the framework of explanation we developped in chapter 3. In particular,
we will first explain that they are compatible with adaptationnist scenarios of the origins
of speech, strengthening them through providing an explanation of mechanisms that can
generate the structures of speech (complementing mechanisms of natural selection). It
appears that the low complexity of the models’ assumptions, especially in comparison with
the speech code they generate, makes it plausible that natural selection could evolve them
relatively easily under pressure for linguistic communication.

Third, the genericity of the mechanisms involved in these models will allow us to propose
a scenario in which they could have evolved without direct relation with a selective pressure
for linguistic communication. We propose that shared speech structures could be collateral
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effects of the formation of other structures that are older from an evolutionary point of view,
such as vocal imitation, or as we will study in the next chapter, intrinsic motivation systems
that push organisms to explore their body and their environment driven by pure curiosity.
This leads us to suggest that contemporary speech codes may be exaptations, which first
versions may have been the result of self-organization of structures not initially associated
to language.

9.1 Functional correspondences with human neural sys-
tems

In chapter 7, we showed the similarities between vowel systems generated by artificial indi-
viduals in the simulations and human vowel systems. We will argue here that the assump-
tions of mechanisms which lead to these results have several strong functional correspon-
dences with the human brain. While we employed terms such as “neural unit” and “neural
network” to describe the internal architecture of artificial individuals, one has to note that
they are not models of the physiology of human brains. These terms were used for func-
tional analogy. These artificial neural architectures, and their mechanisms of plasticity, are
abstract mathematical models of certain functions of biological neural networks. Let us look
at these correspondences.

First, the basic elements of the brains of the individuals in the models are artificial
neural units that respond maximally for a certain stimulus, and this response decreases
as the stimuli presented become more different from the “preferred” stimulus. The spatial
neural units introduced in chapter 6 rely on mechanisms commonly used in the neuroscience
litterature (Arbib, 2002), with a Gaussian tuning function that is often used in such models.
Other decreasing tuning functions could have been used, as long as they converge to zero
far from the preferred stimulus, and would lead to very similar results. The temporal neural
units introduced in chapter 8 are less frequently used but are part of the conceptual landscape
in neuroscience. For example, the neurons used in visual cortex have such spatio-temporal
activation functions (Dayan and Abbot, 2001). Similar neurons appear to be used also in
auditory processing which implies a temporal component of perception (Kandel, 2001).

The plasticity mechanism that allows neurons to adapt their preferred vectors upon the
perception of new stimuli is also relatively common. The reinforcement of the sensitivity
of neural units to stimuli that activate them strongly constitutes the basis of Kohonen
self-organizing maps (Kohonen, 1982), themselves considered as models of cerebral cortex
(Afflalo and Graziano, 2006). This law of adaptation is often formulated in terms of hebbian
reinforcement of inter-neuron connections (Arbib, 1995). Other models similar to those we
have studied, and focused on the perception of vowels, have lead to significant advances
about the understanding of perceptual development in speech (Guenther and Gjaja, 1996).

In the models, neural units of individuals are organized as maps peculiar to each modality,
which is an important property of the organization of biological brains. Furthermore, these
maps are connected in such a way that individuals can learn to master the correspondences
from one space to another: they can find the articulatory configuration which correspond to
a sound and vice versa. This competence to translate from one space to the other is obviously
present in humans as this is needed for imitation. Below we will discuss the possible origins
of such a capacity. For now, let us just note that this capcity is found in many other animals:
for example, an equivalent capacity to master the coordination between hand movements
and vision exists in animals who have hands. Recent discoveries concerning mirror neurons
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(Rizzolatti et al., 1996) have stimulated a lot of animation in the scientific community. These
are neurons, initially observed in monkeys but also present in humans, which are normally
activated when the animal produces a motor action (e.g. take an apple in the hand), but
which are also activated when they see another animal doing the same action. However, this
discovery does not go much further than identiying certain parts of the neuronal path that
enable to translate from one space to another, and it is still unclear whether this circuitry
is innate or the result of learning. The structure of connections between neural maps in the
simulation was designed to be as generic as possible and does not assume such a precise
innate circuit mapping certain actions to certain perceptions. Rather, it relies on hebbian
adaptation mechanisms that learn to map the activities of motor neurons to the activities
of perceptual neurons.

The coupling between perceptual and neural maps and the dynamic adaptation of pre-
ferred stimuli of neural units produces the phenomenon of “perceptual attunement” well-
established in the phonological development of infants (Vihman, 1996): the perception of a
sound increases the probability to produce a similar sound in the future.

The preferred stimuli of neural units, as well as the connections between neural units,
are initially random and adapt, or even survive and disappear for temporal neurons, as a
function of their activation across the life of the individual. Activity-dependant adaptation,
growth and pruning is a brain building mechanism supported by selectionnist theories of
neuronal epigenesis proposed by Changeux, Courrége and Danchin (Changeux et al., 1973)
and Edelman (Edelman, 1993). These theories were recently reinforced by the discovery of
apoptosis, or programmed cellular death, which shows that all neurons have an internal sui-
cide program which has to be inhibited to survive (Ameisen, 2000). This inhibition happens
through reception of neurotrophin, in particular when neurons are sufficiently stimulated.
Several approaches in neuroscience, such as the theory of Changeux, Courrége and Danchin
(Changeux et al., 1973), as well as more recent theories like the one proposed by Fernando
and Szathmary (Fernando et al., 2013), conceptualize learning in the brain as initial gen-
eration of random neural material which is progressively sculpted through interaction with
the environment.

In the simulations we presented, the categorization of stimuli by each neural map has
been modelled through the dynamic relaxation of recurrent neural networks, until they fell
into an attractor (which was a fixed point). The category of the stimulus was the identity
of the attractor. Conceptualizing perceptual categories as attractors of brain activity con-
sidered as a dynamical system is an idea proposed several times in the scientific community,
for example by Edelman (Edelman, 1993) or Kaneko and Tsuda (Kaneko and Tsuda, 2000).
Freeman (Freeman, 1978) conducted experiments on the dynamics of electric activity of the
olfactive bulb in rabbits that confirm the plausibility of this hypothesis.

Vocal production by the artificial individuals we considered was happening through the
selection of several articulatory objectives, which were reached in sequence through a con-
tinuous movement of the vocal tract organs. This organization of motor control along two
levels has been the focus of several works on human motor control (Flash and Hochner,
2005). At the higher level, a motor program specifies the objectives to be reached (the
gestural score in the case of speech). At the lower-level, other neural mechanisms execute
the program taking into account the current physical and functional constraints. In the
preceding chapters, we studied the higher level of motor control, modelling their low-level
execution with a relatively simple mechanism (interpolation). Thus, we did not consider
in detail the interesting phenomena of co-articulation and their potential influence on the
construction of phonemic repertoires.
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9.2 From models to evolutionary scenarios of the origins
of speech forms

We have so far focused on how the mechanisms we presented, including their assumptions,
could generate systems of human-like vocalizations in groups of individuals. We will now
discuss the possible evolutionary origins of these mechanisms, and of the function of the
biological building blocks they model. In particular, we will investigate whether the most
important of these functions could have evolved independantly of a function/pressure for
linguistic communication.

If the perceptual and motor systems in these models are considered independantly from
each other, it is possible to explain their origins outside the function of communication. All
mammals with ears have also neuronal ensembles dedicated to sound processing, and other
neurons dedicated to the control of their mouth and vocal organ. As we have seen, the way
motor control operates in the models is very generic and based on neural map structures
that can be used in multiple modalities. Furthermore, plasticity in these neural maps (which
increases the sensitivity to perceived stimuli) is typical of unsupervised learning mechanisms,
also called latent learning, in mammals.

However, two mechanisms in these models are associated to behaviors and capacities
which distinguis humans from many other species (but not all). The first mechanism corre-
sponds to the plastic neural structure connecting auditory and motor/phonatory systems.
In the models, these structures allow individuals to learn perceptuo-motor correspondences
of their own vocalizations, as well as to map the vocalizations produced by other individuals
to their own motor commands. What could be the evolutionary origins of such a connection
structure? Has it evolved under linguistic selective pressures? In section 9.3, we discuss
such an adaptationist scenario. Or could it evolve without a pressure for linguistic com-
munication? Its genericity allows to formulate the hypothesis that adaptive vocal imitation
could be the original function for which it evolved. Interestingly, as we will discuss in section
9.4, this capacity is shared by several species which do not have language, such as certain
species of birds or whales, but have combinatorial systems of vocalization with complex
rules of combination.

A second mechanism that is special and key in the models we discussed is babbling:
a mechanism that pushes individuals to spontaneously explore their vocal space. In the
models, this mechanism is crucial to allow individuals to experiment their vocal tract, collect
sensorimotor observations, and learn the auditory-motor mapping thanks to the plastic
intermodal neural connections. It is also key for the generation of a diversity of speech
sounds influencing the vocalizations of others. One hypothesis is that an ad hoc vocal
babbling mechanism could have evolved as a building block in the morphogenesis of speech,
in the specific functional context of adaptive vocal imitation.

A complementary hypothesis to understand the origins of babbling, which we will study
in the next chapter, is that it may be a natural consequence of a general intrinsic drive to
learn and gain information about the world, which we call “curiosity” in everyday language,
and that is expressed particularly strongly in humans. Indeed, a distinctive trait of humans
is their propensity to explore spontaneously their own body and their environment, driven by
the pure pleasure to learn, to acquire new information, to practice activities for themselves
and not to accumulate extrinsic rewards such as food or social recognition. Such a propensity
to explore driven by curiosity is observed as well in infants who explore avidly objects they
can grasp, as in adults when they play games like sudoku or read novels. These mechanisms
of “intrinsic motivation”, a term used by psychologists, were studied in many research pro-
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grams in educational and developmental psychology (Deci and Ryan, 1985; Berlyne, 1960;
Csikszenthmihalyi, 1991; Oudeyer et al., 2016), and more recently in neuroscience (Oudeyer
and Kaplan, 2007; Gottlieb et al., 2013; Gottlieb and Oudeyer, 2018). They appear to be
expressed with a unique amplitude in humans. We will see that these mechanisms, proba-
bly evolutionarily older than language, can spontaneously generate and self-organize vocal
development. In this context, we will discuss in the next chapter computational models of
curiosity-driven learning (Oudeyer et al., 2007; Kaplan and Oudeyer, 2007). These models
will allow us to understand how such mechanisms of intrinsically motivated exploration can
automatically form organized developmental learning trajectories in individuals, where vo-
cal exploration and imitation appear spontaneously out of the same mechanism that drives
learning of object manipulation (Oudeyer and Kaplan, 2006b; Moulin-Frier and Oudeyer,
2012).

9.3 An adaptationist scenario

An evolutionary scenario to consider is one in which the plastic structure connecting audi-
tory and motor systems appeared after specific genetic innovations selected under a pressure
for linguistic communication. The models we presented are compatible with such a scenario,
and can enlighten the chicken and egg evolutionary problem we discussed in chapter 2. This
problem was that it is hard to understand how a convention like a speech (or gestural) code,
which is necessary to establish any linguistic communication, can form when there is not al-
ready one. Indeed, other models of the evolution of speech (de Boer, 2001; Goldstein, 2003;
Moulin-Frier et al., 2008), lexicon or grammar (Steels, 2012), show how a linguistic conven-
tion can form when one assumes that individuals can already interact following interaction
protocols called “language games”. Such language games constitute complex conventional-
ized interactional structures, which involve signals used to identify who is the speaker and
the hearer and what should be done by whom and when, like the rules of a board game.
These rules have a syntactic structure and are partly arbitrary (many variations can be
imagined for each game). They are in themselves a (pre-)linguistic communication system.
Thus, it is hard to see how such interactions can happen without a system of forms (visual
or acoustic) permitting to transfer information from one individual to another to regulate
their interactions.

Interestingly, the models we studied in previous chapters do not involve language games
- they do not rely on any form of explicit social coordination. Yet in such a context, we
showed that it was possible to bootstrap a conventional speech code. This opens a door to
understanding how such mechanisms could be used by evolution for generating and selecting
fundamental building blocks of language that could later on be used in establishing more
complex forms of linguistic communication, and be further shaped by sophisticated cultural
pressures for communication such as in the models of language dynamics studied by de
Steels, Kirby, de Boer, Goldstein or Moulin-Frier.

The nature of the system’s components also provide a very different light than the ideas
proposed by the innatist perspective proposed by Pinker and Bloom (Pinker et Bloom, 1990)
or Chomsky (Chomsky, 1975). These perspectives advocate the genetic pre-wiring of speech
sound organization, expressed through brain maturation. The models we studied suggest
another hypothesis: no specific “program” encodes specifically digital and shared speech
codes in neural networks. Indeed, there is no innate precise wiring between the neural
perceptual and motor structures: rather the innate wiring is random and changes according
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to very generic hebbian rules of plasticity. The initial preferred vectors of perceptual and
motor maps are also random. Yet, in spite of this initial randomness, we showed that
spontaneous speech structures systematically formed and were shared across individuals.
The idea that emerges is that it may not have been a difficult search problem for evolution
to find a genetic program that allows individuals to develop speech codes, especially when
this capacity has a direct adaptive advantage. Simulations show that there is no need
to explore the huge and complicated space of genetic programs that could encode for the
maturation of highly specific neural networks. On the contrary, small variations of simple
neural structures, such as creating random plastic connections between auditory and motor
maps, could be enough. The fundamental role of development in individuals, also called
ontogenesis, allows to channel phylogenetic evolution, and vice versa: this is the basis of a
new research field called evolutionar-developmental biology (West-Eberhard, 2003; Carroll,
2005).

The limited complexity of the neural structures required to generate such self-organization
of speech code also point to novel and stimulating evolutionary scenarios as we will now dis-
cuss.

9.4 Exaptation: speech as a collateral effect of adaptive
vocal imitation?

Vocal interaction is a very common phenomenon in the animal world. Humans use them for
linguistic communication, but they serve many other functions in animals. Several animal
species have a sophisticated vocal plasticity (see figure 9.1), both motor and perceptual,
but do not have a natural language system: they do not use these vocalizations as symbolic
forms arbitrarily and culturally associated to semantic categories '. Such vocal plasticity
is typically associated with capacities for adaptive vocal imitation (Mercado et al., 2005;
Caldwell and Whiten, 2002), as studied in several species of birds (Marler et al., 2004; Kelley
et al., 2008) and cetaceans (Frankel, 1998; Handel et al. 2009) capable to learn and repeat
the vocalizations of their conspecifics, or even sometimes the sounds of other species or of
their surrounding environment (Kelley et al., 2005). The vocal and song repertoires of these
species are also often combinatorial, with rules that regulate how sounds can be combined
(Balaban, 1988; Frankel, 1998), as illustrated on figure 9.2, a structure that shares strong
similarities with human speech structures. While there is not yet a general consensus in the
scientific community to explain the functions of these capacities for adaptive vocal imitation
and learning, as well as to explain the potential function of combinatorial structures, many
hypothesis were proposed and do not involve linguistic communication. For example, such
capacities could be used by individuals to find sexual mates by showing their vocal “know-
how”, or to mark their affiliation to a group that shares the same vocalizations and increase
social cohesion, to mark their territory, or to produce sounds that repel their predators
(Kelley et al., 2005).

Interestingly, the neural mechanisms in the models we discussed in previous chapters
correspond basically to the elementary “neural kit” needed for any form of adaptive vocal
imitation. It is hard to imagine simpler mechanisms that would allow an individual to learn
perceptuo-motor correspondences and repeat the vocalizations of its conspecifics. It is thus
natural to formulate the hypothesis that similar plastic neural structures could have evolved

1Several species have a fixed repertoire of alarm calls, used to alert when a danger is coming, but these
systems are neither adaptive nor linguistic.
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Figure 9.1: Humpback whales and swamp sparrows are two animal species capable of adaptive
vocal imitation. They can learn the songs of conspecifics, and songs can vary from one group to the
other. Their songs are structured around the reuse of elementary notes taken in a sound repertoire
that is specific to each group. (Photos Dr. Louis M. Herman/NOAA et H. Stephen Kerr).

in humans under a pressure for adaptive vocal imitation, for non linguistic functions similar
to those we just mentionned for other species. In this perspective, the combinatorial and
syntactic properties of sound systems, as well as the capacity to categorize sounds, could
be a collateral effect self-organized out of the basic biological material for adaptive vocal
imitation. Once such shared combinatorial vocal structures have evolved, their recruitment
for efficient linguistic communication is possible. In this context the use of combinatorial
vocal sounds in linguistic systems would be an exaptation.

As a consequence, these models of the formation of speech sounds also open a stimulat-
ing perspective for the understanding of how organized and shared vocal systems form in
animal species that are capable of adaptive vocal imitation. Indeed, the presence of com-
binatorial sound systems with syntactic rules of sound/note combination, the equivalent of
phonemic coding in humans, has so far remained a mystery. The functions attributed to
bird or whale songs could often be achieved with much simpler non-combinatorial vocal sys-
tems. The models we discussed, which can be transposed to other vocal tract and auditory
physiologies, suggest that these syntactic and combinatorial structures could be a collateral
and spontaneous effect of the elementary mechanisms of adaptive imitation. Thus, these
models open new hypotheses to explain how digital and combinatorial song systems could
have self-organized through cultural interaction in groups of birds or cetaceans, as well as
how they can vary and evolve across several groups of individuals.
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Figure 9.2: The song structure of swamp sparrows (adapté de Balaban (Balaban, 1988)). On line
(a), examples of acoustic units (notes) systematically reused by these birds to construct their songs.
On line (b), examples of note groupings, also called syllables, that are themselves systematically
reused to construct songs. The building of these syllables is constrained by phonotactics rules
which vary from one group to the other. Birds from a geographical zones have preferences for using
certain notes at certain specific locations in syllables. On line (c), two examples of songs from
swamp sparrows. There is a strong similarity between the structure of vocalizations used in these
bird species and human speech sounds, as both are based on digitality, combinatoriality, syntactical
rules for sound combination, and cultural sharing. Computational models presented in preceding
chapters could be applied to account for the morphogenesis of vocal systems in such bird species
with adaptive vocal imitation. This opens a new vision on the way digital and combinatorial sound
systems can self-organize in groups of birds (or cetaceans with similar capacities), and at the same
time how this vocal system vary and evolve across groups of individuals.



Chapter 10

Curiosity, Speech Development
and Emergence of Communication

Vocal babbling appears to be a crucial exploration mechanism in the development and
evolution of speech, as discussed in the previous chapter. Did this mechanism evolve specifi-
cally for speech? Vocal exploration as it is practiced by human infants in their first months,
shares strong similarities with body exploration as a whole - and scientists talk of “body
babbling”. Beyond exploring the perceptual consequences of their vocal tract movements,
infants also explore spontaneously and systematically how the movements of their arms or
legs provoke visual changes, proprioceptive or gustatory stimuli when they put them in
the mouth, or produce effects on physical objects around them. Such spontaneous body
exploration is expressed in infants to an extent that is unparalleled in any other animal.

Rather than imagining ad hoc mechanisms that are specific to exploration and learning
in each modality, would it be possible to explain vocal babbling out of general intermodal
body exploration mechanisms? This is the hypothesis we study in this chapter. We will
see that certain mechanisms called intrinsically motivated learning, implementing a form
of what we call “curiosity” in everyday language, can self-organize vocal exploration and
interactional structures in individuals through the same process than the discovery of how
arms and legs can be used to interact with the physical world. In such a perspective, vocal
babbling forms through the dynamics of general sensorimotor development in humans, and
this could be a stepping stone to guide and constrain the evolution of speech.

1Several parts of this chapter reuse text, with permissions, from the following articles co-authored with
Linda Smith, Clément Moulin-Frier, Mai Nguyen and Sébastien Forestier:
Oudeyer, P-Y. and Smith. L. (2016) How Evolution may work through Curiosity-driven Developmental
Process, Topics in Cognitive Science.
Moulin-Frier, C., Nguyen, S.M., Oudeyer, P-Y. (2014) Self-organization of early vocal development in infants
and machines: the role of intrinsic motivation, Frontiers in Psychology (Cognitive Science), 4(1006)
In particular, sections 10.1 and 11.2 was co-written with L. Smith, and section 10.3 was co-written with C.
Moulin-Frier and M. Nguyen.
Forestier S, Oudeyer P-Y. 2017. A Unified Model of Speech and Tool Use Early Development. Proceedings
of the 39th Annual Meeting of the Cognitive Science Society.
Citations of the work described here should refer to these articles.
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10.1 Intrinsic motivation and spontaneous exploration in
infants

Learning experiences do not passively “happen” to infants. Rather, infants’ own activities
create and select these experiences. Piaget (1952) described a pattern of infant activity that
is highly illustrative of this point. He placed a rattle in a four-month-old infant’s hands. As
the infant moved the rattle, it would both come into sight and also make a noise, arousing
and agitating the infant and causing more body motions, and thus causing the rattle to
move into and out of sight and to make more noise. The infant had no prior knowledge of
the rattle but discovered through activity the task and goal of rattle shaking. As the infant
accidentally moved the rattle, and saw and heard the consequences, becoming captured by
the activity and outcomes, the infant may be said to have gained intentional control over
the shaking of the rattle and the goal of making noise (Thelen, 1994). This example -a
body movement that leads to an interesting outcome and thus more activity and the re-
experience and building of expectations about the outcome- may be foundational, not just
to developmental process, but also to how evolution works through developmental process.

Infants’ exploration of rattles are instances of action and learning motivated by curiosity
and may reflect intrinsic motivations that select “interesting” sensorimotor activities for the
pure pleasure of learning, the pleasire of gaining information and control about the world
(Lowenstein, 1994; Gottlieb et al., 2013). However, what is interesting is history dependent.
Once all the variations in rattle shaking are easily predicted, and all the outcomes expected,
then playing with a rattle is not very interesting, as evident in the disinterest of older infants
in rattles. What is interesting depends on what one knows and what one does not know.

Across many different fields, theorists have suggested that “interest” is engaged by what
is just beyond current knowledge, neither too well known nor too far beyond what is un-
derstandable. This theoretical idea has been offered many times in psychology, through
concepts like cognitive dissonance (Kagan, 1972), optimal incongruity (Hunt, 1965), inter-
mediate novelty (Berlyne, 1960; Kidd, Piantadosi, Aslin, 2012) and optimal challenge (Csik-
szenthmihalyi, 1991). There have been several recent theoretical advances in these ideas in
developmental robotics (Baldassarre and Mirolli, 2013; Gottlieb et al., 2013; Oudeyer et al.,
2007), in models about the evolutionary origins of intrinsic motivation systems (Singh et al.,
2010; Barto, 2013), and in recent findings in neuroscience linking intrinsic motivation with
attention (Gottlieb et al., 2013), as well as in new formal models of infant visual attention
(Kidd, Piantadosi, Aslin, 2012).

In general, learning in these curiosity driven activities progresses to yield an improve-
ment of prediction or control over a repeated activity and thus a reduction of uncertainty
(Friston, 2012, 2015; Oudeyer et al., 2007; Schmidhuber, 1991). Such intrinsically motivat-
ing activities have been called “progress niches” (Oudeyer et al., 2007): progress in learning
in and for itself generates intrinsic rewards and an action selection system directly aims to
maximize this reward. In reinforcement learning frameworks, this search for progress niches
leads to spontaneous exploration (Gottlieb et al., 2013; Kidd et al, 2012; Oudeyer et al.,
2007; Schmidhuber, 1991). In this view, progress in prediction or control is a primary driver
(and accordingly, intrinsic rewards for learning progress/uncertainty reduction may be pri-
mary rewards). These theoretical advances lead to a definition of curiosity as an epistemic
motivational mechanism that pushes an organism to explore activities for the primary sake
of gaining information (as opposed to searching for information in service of achieving an
external goal like finding food or shelter). Thus, activities and stimuli that arouse curiosity
and stimulate exploration are those for which there is a particular relation between inter-
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nal predictive models of these activities or stimuli and what is actually observed through
experimentation. From a machine learning perspective, mechanisms of information seeking
are called active learning, where the learner probabilistically and through its own activity
selects experiences according to their potential for reducing uncertainty and for improving
world models (Cohn et al., 1996; Oudeyer et al., 2007; Lopes and Oudeyer, 2010; Lopes and
Montesano, 2014).

Such a motivational mechanism of curiosity will often be only one of several motivational
mechanisms operating in any living being, and at any given time curiosity may interact,
complement or conflict with other motivations such as motivation to satisfy physiological
needs like hunger or physical and social contact with social peers. In theoretical models,
information seeking mechanisms have been used either as an “exploration bonus” mechanism
in service of efficient maximization of a task-specific reward, or as primary rewards driving
models of curiosity-driven learning (Gottlieb et al., 2013).

Curiosity-driven learning through the search of information gain, is what fuels children’s
motivation to make sense of their environment, as if they were little scientists making in-
formed choices of which are the informative experiments to perform in order to build better
predictive theories about the world (Gopnik et al., 1999; Shulz, 2012; Oudeyer, 2018). Fur-
ther than guiding exploration, intrinsic motivation also modulates brain mechanisms for
learning, for example producing positive effects on memory (Stahl and Feigenson, 2015).
Thus, these mechanisms are at the center of research in educational sciences, with stud-
ies of how the balance between intrinsic and extrinsic motivation can influence cognitive
development (Bruner, 1962; Cameron and Pierce, 2002).

Brain circuits associated to spontaneous exploration and curiosity are still little known,
but recent work has been converging towards the identification of neural mechanisms asso-
ciated to intrinsic motivation (Kaplan et Oudeyer, 2007; Gottlieb et al., 2013; Gottlieb et
al., 2014; Gottlieb and Oudeyer, 2018). For example, Panksepp identified in the brain a
lateral hypothalamic corridor, starting from ventral tegmental area to nucleus accumbens,
playing a central role in spontaneous exploration (Panksepp, 1998). This system is also
located at a strategic location in dopaminergic circuits, which use multiple forms of phasic
and tonic signals to influence the processing and response to novel stimuli or errors in reward
predictions (Schultz, 1998; Hooks and Kalivas, 1994; Fiorillo, 2004). The degeneration of
dopaminergic neurons in Parkinson’s disease does not only provoke psychomotor impair-
ments, but also decreases exploration behaviors and interest in cognitive tasks (Bernheimer
et al., 1973). Reversely, artificial electric or chemical stimulation of the dopaminergic system
triggers spontaneous exploration and curiosity in humans and animals (Panksepp, 1998).

Intrinsic motivation, interacting with several brain and behavioral structures, form a
complex system and understanding it requires here again formal and operational modelling
to complement these works in psychology and neuroscience. In particular, it appears crucial
to formulate precisely concepts such as “optimal challenge” or “intermediate complexity”, as
they are key to define interest in such motivational systems. How could the brain measure
in practice intermediate complexity? How could it exploit it to decide which experiments to
make, which situations to explore? What is the long-term impact of intrinsic motivation on
the structuration of sensorimotor, cognitive and social skills? In recent years, mathemati-
cal, computational and robotic models have approached these questions and have provided
surprising ideas.
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10.2 A robotic model of artificial curiosity

Developmental robotics is a research domain that uses robotic modelling to study the mech-
anisms by which embodied individuals can continuously acquire know-how and knowledge
across their life span, either through self-exploration or through social learning (Weng et
al., 2001; Oudeyer, 2011). In particular, it focuses on modelling several families of develop-
mental constraints that guide and structure learning in the real world. Examples include
the study of the role of morphological properties of bodies, maturation of sensorimotor
organs which grow progressively, motor synergies that simplify high-dimensional motor con-
trol, attention and emotions in social interaction, imitation, cognitive biases that facilitate
statistical inference, and motivational systems which is the topic we discuss here.

Several strands of computational and robotics models of spontaneous active exploration,
serving the acquisition of new skills, were elaborated so far (Oudeyer, 2018). Some of these
works take the purely engineering objective to build machines that can learn efficiently
repertoires of complex tasks, anchoring themselves in the domain of statistical inference and
machine learning (e.g. Fedorov, 1976; Schmidhuber, 1991, 2011; Kaplan and Oudeyer, 2003;
Barto et al., 2004; Lehman and Stanley, 2008; Lopes et al., 2012; Baranes and Oudeyer,
2013; Martius et al., 2013; Bellemare et al., 2016). Other works were have targeted to model
exploration mechanisms in the living, trying to help us understand better mechanisms of
curiosity and development in humans (Oudeyer et al., 2007; Kaplan and Oudeyer, 2007;
Schembri et al., 2007; Baldassarre, 2011).

The models we will now discuss, developped in particular with Frédéric Kaplan, Clé-
ment Moulin-Frier, and Sébastien Forestier, belong to the latter perspective. They were
also among the first models of artificial curiosity to be implemented in robots, allowing
progressive learning and development of new and diverse motor skills. As we will describe,
several robot experiments illustrate how mechanisms of curiosity-driven exploration, dy-
namically interacting with learning, physical and social constraints, can self-organize devel-
opmental trajectories and in particular lead a learner to successively discover two important
functionalities, object affordances and vocal interaction with its peers.

10.2.1 The Playground Experiment: discovering affordances

In the Playground Experiment, a quadruped learning robot (the learner) is placed on an
infant play mat with a set of nearby objects and is joined by an “adult” robot (the teacher),
see figure 10.1 (Oudeyer and Kaplan, 2006; Kaplan and Oudeyer, 2007b; Oudeyer et al.,
2007). On the mat and near the learner are objects, and associated affordances, for discovery:
an elephant (which can be bitten or grasped by the mouth), a hanging toy (which can be
“bashed” or pushed with the leg). The robot teacher is pre-programmed to imitate the sound
made by the learner when the learning robot looks to the teacher while vocalizing at the
same time.

The learner is equipped with a repertoire of motor primitives parameterized by several
continuous numbers that control movements of its legs, head and a simple simulated vocal
tract. Each motor primitive is a dynamical system controlling various forms of actions: (a)
turning the head in different directions; (b) opening and closing the mouth while crouching
with varying strengths and timing; (c) rocking the leg with varying angles and speed; (d)
vocalizing with varying pitches and lengths. These primitives can be combined to form a
large continuous space of possible actions. Such motor primitives allow to constrain the
movements that the robot can explore, providing a structure which will allow it to produce
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Figure 10.1: The Playground Experiment (Oudeyer and Kaplan, 2006; Oudeyer et al., 2007).
The robot in the centre explores through adaptive babbling driven by a model of curiosity, and
learns to predict the effects that its movements cause on its environment. He generates continuous
movements based on setting the parameters of motor primitives in its repertoire, which serve as
lego bricks that can be assembled and continuously varied. It can move its legs, its head, its jaw
and produce vocalizations). It observes perceptual effects with a repertoire of sensori primitives,
which allow it to measure movement, proprioceptive effects (e.g. whether he has grasped something
in its mouth), or the characteristics of sounds it hears. Its cognitive architecture is presented on
figure 10.2.

a diversity of controllable effects on its environment. They can be related to motor prim-
itives such as central pattern generators (CPGs) observed in animals (Flash and Hochner,
2005). Similarly, sensory primitives allow the robot to detect visual movement, salient visual
properties (visual patches with certain characteristics), proprioceptive touch in the mouth,
and pitch and length of perceived sounds. For the robot, these motor and sensory primitives
are initially black boxes and he has no knowledge about their semantics, effects or relations,
and how the values of their parameters change their effects. However, the environment is
such that it contains structures that the robot has to discover. For example, an object in
front of him can be grasped with the mouth, which it can measure with its proprioceptive
sensory primitive. An object on its left is too far to be grasped, but can be pushed in diverse
ways with the leg, which the robot can observe if at the same time it looks in the direction
of this object, turning its visual sensor in the appropriate direction.

The robot learns how to use and tune these primitives to produce various effects on
its surrounding environment, and exploration is driven by the maximization of learning
progress, by choosing physical experiences (experiments) that improve the quality of predic-
tions of the consequences of its actions. What the robot will find interesting, and thus the
notion of optimal complexity, corresponds here to the situations for which its errors decrease
fastest: thus, it will avoid familiar and trivial situations, as well as situations which are too
complex for it at this particular moment of cognitive development. As we will see, this will
push the robot to progressively explore activities of increasing complexity.
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This requires capabilities for learning, meta-cognition and action selection, as used in the
R-TAC computational architecture on figure 10.2 (Oudeyer, Kaplan et al. 2007; Moulin-Frier
et al., 2014). A prediction machine (M) learns to predict the consequences of actions taken
by the robot in given sensory contexts. For example, this module might learn to predict
(with a neural network) which visual movements or proprioceptive perceptions result from
using a leg motor primitive with certain parameters. To do this, each time the robot makes
an action and observes its consequences in a given context, it collects this data and use
it to update an internal predictive model. The update of this predictive model consists in
detecting statistical regularities in the data observed by the robot, allowing it to predict
better in the future the consequences of similar actions through forms of interpolation or
extrapolation.

On top of this lower-level learning module, a meta-cognitive module estimates the evo-
lution of errors in prediction of M in various regions of the sensorimotor space. This module
estimates how much errors decrease in predicting an action, for example, in predicting the
consequence of a leg movement when this action is applied towards a particular area of the
environment. These estimates of error reduction are used to compute the intrinsic reward
from progress in learning. This reward is an internal quantity that is proportional to the
decrease of prediction errors, and the maximization of this quantity is the goal of action
selection within a computational reinforcement-learning architecture (Oudeyer and Kaplan,
2007; Oudeyer et al., 2007). Importantly, the action selection system chooses most often
to explore activities where the estimated learning progress is high. However, this choice is
probabilistic, which leaves the system open to learning in new areas and open to discover-
ing other activities that may also yield progress in learning 2. Since the sensorimotor flow
does not come pre-segmented into activities and tasks, a system that seeks to maximize
differences in learnability is also used to progressively categorize the sensorimotor space
into regions. This categorization thereby models the incremental creation and refining of
cognitive categories differentiating activities/tasks.

10.2.2 Self-organization of an ordered learning curriculum

In the Playground experiment, multiple experimental runs lead to two general results. First,
one observes a self-organization of developmental trajectories, where an ordered learning
curriculum spontaneously forms through active self-exploration. Second, if one computes
statistics over many experiments, one discovers the formation of a mixture of regularities
and diversities in the developmental patterns: some behavioural or cognitive structures
appear often in a certain order, but some robots follow a quite different trajectory even
when starting from the same mechanisms and environment (Oudeyer and Kaplan, 2006;
Oudeyer et al., 2007). Figure 10.3 shows an example of the formation of several behavioral
structures in one run of the experiment.

To illustrate how the intrinsically motivated exploration mechanism can automatically
generate such ordered learning stages, let us first imagine a learner confronted with four
categories of activities, as shown on figure 10.4. The practice of each of these four activities,
which can be of varying difficulty, leads to different learning rates at different points in
time (see the top curves, which show the evolution of prediction errors in each activity if
the learner were to focus full-time and exclusively on each). If, however, the learner uses

2Technically the decision on how much time to spend on high learning progress activities and other ac-
tivities is achieved using Multi-Armed Bandit algorithms for the so-called exploration/exploitation dilemma
(Audibert et al., 2009).
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Figure 10.2: TAC cognitive architecture for curiosity-driven learning (Oudeyer et al., 2007).

curiosity-driven exploration to decide what and when to practice by focusing on progress
niches, it will avoid activities already predictable (curve 4) or too difficult to learn to predict
(curve 1), in order to focus first on the activity with the fastest learning rate (curve 3) and
eventually, when the latter starts to reach a plateau to switch to the second most promising
learning situation (curve 2). Thus, such robots will show a regular developmental course
- one that will be “universal” for learners with similar internal processes learning in simi-
lar environments. Embodied exploration driven by learning progress creates an organized
exploratory strategy: the system systematically achieves these learning experiences in an
order and does so because they yield (given the propensities of the learner and the physical
world) different patterns of uncertainty reduction.

Now, let us come back to what happens in the Playground experiment and focus on the
self-organization of such an ordered learning curriculum. In all of the runs, one observes the
formation of structured developmental trajectories, where the robot explores objects and
actions in a progressively more complex stage-like manner while acquiring autonomously
diverse affordances and skills that can be reused later on and that change the learning
progress in more complicated tasks. The following developmental sequence is typically
observed:

1 In a first phase, the learner achieves unorganized body babbling;
2 In a second phase, after learning a first rough model and meta-model, the robot stops

combining motor primitives, exploring them one by one, but each primitive is explored
itself in a random manner;
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Figure 10.3: Measures of the evolution of the behavior of the developmental robot in the Play-
ground Experiment. Several phases appear spontaneously as the result of the dynamical interaction
between learning, curiosity-driven exploration, the body and the environment. These phases appear
following an order characterized by an increase of the complexity of sensorimotor activities explored
by the robot.

3 In a third phase, the learner begins to experiment with actions towards zones of its
environment where the external observer knows there are objects (the robot is not
provided with a representation of the concept of “object”), but in a non-affordant
manuner (e.g. it vocalizes at the non-responding elephant or tries to bash the teacher
robot which is too far to be touched);

4 In a fourth phase, the learner now explores the affordances of different objects in the
environment: typically focussing first on grasping movements with the elephant, then
shifting to bashing movements with the hanging toy, and finally shifting to explorations
of vocalizing towards the imitating teacher.

5 In the end, the learner has learnt sensorimotor affordances with several objects, as
well as social affordances, and has mastered multiple skills. None of these specific
objectives were pre-programmed. Instead, they self-organized through the dynamic
interaction between curiosity-driven exploration, statistical inference, the properties
of the body, and the properties of the environment.

These playground experiments do not simply simulate the acquisition of particular skills
(such as batting at toys to make them swing or vocalizations) but simulate an ordered and
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Figure 10.4: Tllustration of a self-organized developmental sequence where the robot automatically
identifies, categorizes and shifts from simple to mode complex learning experiences. Figure adapted
with permission from (Kaplan and Oudeyer, 2007).

systematic developmental trajectory, with a universality and stage-like structure that may
be mistakenly taken to indicate an internally-driven process of maturation. However, the
trajectory is created through activity and through the general principle that sensorimotor
experiences that reduce uncertainty in prediction are rewarding. In this way, developmental
achievements can build on themselves without specific pre-programmed dependencies but
nonetheless - like evolution itself - create structure (see Smith and Breazeal, 2007; and Smith
2013, for related findings and arguments).
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10.2.3 Regularities and diversity in developmental trajectories

Because these are self-organizing developmental processes, they generate not only strong
regularities but also diversity across individual developmental trajectories. For example, in
most runs one observes successively unorganized body babbling, then focused exploration
of head movements, then exploration of touching an object, then grasping an object, and
finally vocalizing towards a peer robot (pre-programmed to imitate). This can be explained
as gradual exploration of new progress niches, and those stages and their ordering can be
viewed as a form of attractor in the space of developmental trajectories. Yet, with the
same mechanism and same initial parameters, individual trajectories may invert stages,
or even generate qualitatively different behaviours. This is due to stochasticity, to even
small variability in the physical realities and to the fact that this developmental dynamic
system has several attractors with more or less extended and strong domains of attraction
(characterized by amplitude of learning progress). We see this diversity as a positive outcome
since individual development is not identical across different individuals but is always, for
each individual, unique in its own ways. This kind of approach, then, offers a way to
understand individual differences as emergent in developmental process itself and makes
clear how developmental process might vary across contexts, even with an identical learning
mechanism.

10.2.4 Bootstrapping communication

A further result to be highlighted in the Playground experiment is the early development
of vocal interaction. With a single generic mechanism, the robot both explores and learns
how to manipulate objects and how to vocalize to trigger specific responses from a more
mature partner (Oudeyer and Kaplan, 2006; Kaplan and Oudeyer, 2007a). Vocal babbling
and language play have been shown to be key in infant language development; however,
the motivation to engage in vocal play has often been associated with hypothesized lan-
guage specific motivation. The Playground Experiment makes it possible to see how the
exploration and learning of communicative behavior might be at least partially explained
by general curiosity-driven exploration of the body affordances, as also suggested by Oller
(2000).

Furthermore, the mechanism for incremental categorization used in this architecture
allows the robot to distinguish sensorimotor activities based on their degree of learnabil-
ity /predictability. This leads to the formation of internal abstract representations that grow
as the robot explores its world. As argued in (Oudeyer et al., 2007) and in (Kaplan and
Oudeyer, 2007), this makes it possible for the robot to discriminate stimuli corresponding
to its own body - the “self’- (e.g. its hand moving in its visual field, very predictable and
controllable), from stimuli corresponding to external physical objects (e.g. an object that
can be pushed only in certain conditions, predictable but less than its own body), and from
stimuli corresponding to special external entities: the “others”, which are structured but less
predictable and controllable than physical objects.

10.3 Self-organization of early vocal development: the
onset of imitation

The Playground experiment shows how active exploration mechanisms driven by intrinsic
motivation can self-organize global developmental trajectories that span multiple modalities,
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Figure 10.5: The first year of infant vocal development.

and sharing qualitative properties with the progressive structuration of development in
infants. If one focuses on the details of what is happening in each modality in infants, one
also observes complex pattern formation. For example, the development of arm reaching
capabilities follows the so-called proximo-distal law, where infants tend to first explore using
articulations close to the shoulder while freezing articulations close to the hand that are
progressively freed (Berthier et al., 1999). Computational models of adaptive learning,
based on principles similar to the models discussed so far, showed how such proximo-distal
law can be formed as a side effect of learning mechanisms (Schlesinger et al., 2000; Stulp
and Oudeyer, 2018). In what follows, we will focus on properties of early vocal development,
showing that mechanisms of curiosity-driven learning, combined with the influence of social
peers, can generate ordered vocal structures that closely match what is observed in infants.

Early on, babies seem to explore vocalizations as if it was a game in itself, as reported
by Oller who cites two studies from the 19th century (Oller, 2000):

“[At] three months were heard, for the first time, the loud and high crowing
sounds, uttered by the child sponteaneously, [...] the child seemed to take
pleasure in making sounds.” (Sigismund, 1856)

“[He] first made the sound mm spontaneously by blowing noisily with closed
lips. This amused [him| and was a discovery for [him].”® (Taine, 1856)

Such play with her vocal tract, where the baby discovers the sounds she can make,
echoes other forms of body play, such as exploration of arm movements or how he can touch,
grasp, mouth or throw objects. It appears to be closely related to the concept of intrinsic
motivation that we discussed in previous sections. Although spontaneous vocal exploration
is an identified phenomenon, occurring in the early stages of infant development, the specific
mechanisms of such exploration and the role of intrinsic motivation for the structuration of
early vocal development had not received much attention until recently. As we will argue
here, mechanisms of intrinsically motivated spontaneous exploration play an important role
in speech acquisition, by driving the infant to follow a self-organized developmental sequence
which will allow him to progressively learn to control his vocal tract. Let us first look at
the properties of vocal development in infants.

10.3.1 Infant vocal development

Despite inter-individual variations in infant vocal development (Vihman et al., 1986), strong
regularities in the global structuration of vocal development are identified (Oller, 2000, Kuhl,
2004). Figurel0.5 schematizes this vocal development during the first year of infant. First,

3We have changed the gender of the subject to a male in this quotation, in order to follow the convention
of the present article. Throughout this paper, we will use “he” for an infant, “she” for a caregiver (e.g. the
mother) and “it” for a learning agent (the model).
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until the age of approximately 3 months, an infant produces non-speech sounds like squeals,
growls and yeals. During this period, he seems to learn to control infrastructural speech
properties, e.g. phonation and primitive articulation. Then, from 3 to 7 months, he begins
to produce vowel-like sounds (or quasi-vowels) while he probably learns to control his vocal
tract resonances. At 7 months, canonical babbling emerges where well-timed sequences
of proto-syllables are mastered. But it is only around the age of 10 months that infant
vocal productions become more influenced by the ambient language, leading to first word
productions around 1 year of age.
Two features of this developmental sketch are particularly salient.

e Infants seem to first play with their vocal tracts in a relatively language-independent
way, and then are progressively influenced by the ambient speech sounds.

e In the initial phase, when sounds produced by their peers influence little their vo-
calizations, infants seem to learn skills of increasing complexity: normal phonation,
then quasi-vowels and finally proto-syllables. According to Oller (2000), such a se-
quence displays a so-called natural, or logical hierarchy. For example, it is impossible
to master quasi-vowel production without previously mastering normal phonation.

10.3.2 Models of speech development

Several computational models of speech development, where speech acquisition is organized
along a developmental pathway, have been elaborated so far. They have shown how such
stage-like organization can ease the acquisition of complex realistic speech skills.

The DIVA model (Guenther et al., 1998; Guenther, 2006), as well as Kroger’s model
(Kroger et al., 2009), propose architectures partly inspired by neurolinguistics. They involve
two learning phases. The first one is analogous to infant babbling and corresponds to semi-
random articulator movements producing auditory and somatosensory feedbacks. This is
used to tune the correspondences between representation maps within a neural network.
In the second phase, the vocal learner is presented with external speech sounds analogous
to an ambient language and learns how to produce them adequately. The Elija model
(Howard and Messum, 2011) also distinguishes several learning phases. In the first phase
of exploration, the agent is driven by a reward function, including intrinsic rewards such as
sound salience and diversity (which is related to models of curiosity-driven learning), as well
as articulatory effort. Various parameterizations of this reward function allows the model
to produce vocalizations in line with Oller’s vocal developmental stages of infants. In a
subsequent phase, the sounds produced by the model attract the attention of a caregiver,
providing an external reinforcement signal. Other models also use a reinforcement signal,
either from social reinforcement of human listeners (Warlaumont, 2013b), or based on sound
saliency as a form of intrinsic reinforcement (Warlaumont, 2013a), and show how this can
influence a spiking neural network to produce canonical syllables.

These computational models of speech acquisition pre-determine the global ordering
and timing of learning experiences, which amounts to preprograming the developmental se-
quence (for example the switching between self-exploration and imitation/socially influence
babbling). Understanding how a vocal developmental sequence can be formed is still a mys-
tery to solve. As we will argue, mechanisms of active curiosity-driven learning, shown to
self-organize learning curricula in the Playground experiment, may also be good candidates
for explaining the structuration of vocal development.
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Within such a perspective, Clement Moulin-Frier, Mai Nguyen and I have been study-
ing how active exploration mechanisms, driven by a drive to improve predictability and
controllability of one’s own body, can lead to a specific organization of vocal development
(Moulin-Frier and Oudeyer, 2012; Moulin-Frier et al., 2014). This model uses a similar
curiosity-driven learning architecture than in the Playground Experiment, but with three
differences. First, it is applied to the exploration of a complex model of the vocal tract
and auditory system, reusing the articulatory synthesizer of the DIVA model (Guenther,
2006). Second, it is based on a differnt form of curiosity-driven learning, called intrinsically
motivated goal exploration, and detailed in section 10.3.3. Third, it combines intrinsically
motivated goal exploration and social guidance, as detailed in section 10.3.4.

10.3.3 Intrinsically motivated learning by autonomous goal setting

Curiosity-driven learning can take many different forms (Oudeyer and Kaplan, 2007b). In
the Playground Experiment, the learning robot decides which sensorimotor experiment to
make by selecting motor commands that are expected to provide high improvement in pre-
dicting sensory consequences. From the reinforcement learning perspective, this amounts
to modeling curiosity as a learning mechanism driven by the maximization of intrinsic re-
wards that measure forms of information gain, uncertainty or learning progress associated
to taking action a in a given state s.

Another very important form of curiosity-driven learning is “intrinsically motivated goal
exploration” (Baranes and Oudeyer, 2013; Forestier et al., 2017). With this mechanism,
used in the model below, the robot directly imagines and selects goals (defined as target
properties of behavioural and state trajectories), as well as their associated cost function
to measure the adequacy between what they target and what they do. After selecting
a goal, the robot then uses its current internal world model to infer the corresponding
motor program, and tries to improve its competences towards the self-selected goal by
experimenting around its current best known motor program. In turn, new observations
collected through such phases of self-exploration are used to improve the internal world
model. Autonomous exploration by directly and actively self-generating and self-selecting
goals was shown to be particulary efficient for learning diverse repertoires of skills and
world models in real-world high-dimensional sensorimotor spaces (Baranes and Oudeyer,
2013; Rolf and Steil, 2013).

In the speech development model below, goals are defined as target auditory trajectories
that should pass through a number of acoustic key points in a given order. The internal world
model is encoded as a mixture of gaussians encoding the joint distribution between motor
programs and auditory trajectory outcomes, and is updated incrementally as exploration
unfolds. The selection of these goals is based on evaluating expected progress in producing
a given auditory goal, which is a form of learning progress called “competence progress”
(Oudeyer and Kaplan, 2007b). In the model below, a meta-learning system incrementally
tracks the learning progress across the space of goals, and enables to predict the expected
progress associated to selecting a goal.

Importantly, intrinsically motivated goal exploration processes (IMGEPs) define a novel
family of learning mechanisms that is an alternative to the reinforcement learning frame-
work. There are three properties of IMGEPs that differentiate these mechanisms from
reinforcement learning when integrated together:

e First, in IMGEPs learning happens without external supervision from engineers, and
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especially without an externally defined reward measuring a scalar number to be max-
imized and corresponding to a specific task (e.g. maximizing a score in a game).

e Second, IMGEPs approaches learning as driven by intrinsically generated goals and as-
sociated cost functions (as oppposed to intrinsically motivated reinforcement learning
mechanisms that do not include the concept of goal).

e Third, goals in IMGEPs are in the general case defined as a set of properties being tar-
geted over a behavioral /state trajectory, and associated to a self-defined cost function
(a key property being that the learner knows the cost function algorithm as it gener-
ates it). Thus, intrinsically generated goals are more than black-box reward functions
(parts of the RL litterature uses the term “goal” to denote the objective encoded by a
reward function, which is a much more restrictive concept of goal than in IMGEPs).
Also, as IMGEPs goals are defined as global properties of behavioural/state trajec-
tories, the cost functions measuring the adequacy between a trajectory and a goal
cannot be defined as only depending on the current state and action. Thus, in the
general case, IMGEPs goals cannot be framed within the markovian framework used
in reinforcement learning.

Beyond providing a conceptual approach to autonomous learning, IMGEPs afford sev-
eral mechanisms that enable very efficient learning of diverse skills and world models in
large spaces. As goals and cost functions are internally generated, the learner has several
opportunities. It can choose learning goals which are most adapted to its current skills
through automatic curriculum learning, actively controlling the growth of complexity of its
self-generated learning situations (Baranes and Oudeyer, 2013). Also, as he has access to
the “code” defining its goals, it can leverage its knowledge of these goals semantics (e.g.
by differentiating goals and cost functions). Furthermore, and crucially, this framework af-
fords hindsight learning (Forestier et al., 2017): when the learner selects and targets a goal,
generating a trajectory, it can learn concurrently to improve its skills to reach other goals.
Indeed, it can a posteriori imagine other goals, compute the cost of the trajectory for these
goals, and update its world model relative to these other imagined goals. For example, in
the model below, a machine targeting an auditory goal defined in terms of passing through
sounds ['b’, ’a’, 'b’, '] in this order, might produce a motor commands that fails impor-
tantly toward this goal (e.g. may produce ['d’, ’a’, p’, ’0’]) , but learn at the same time
how to produce other goals such as ['d’, ’a’], ['p’,’0’] or ['d’,’a’,’p’,’0’].

10.3.4 Interaction between autonomous goal setting and social guid-
ance

The speech development model outlined below also considers how vocal exploration by
autonomous goal setting can be influenced by the vocalization of social peers. Here, vocal-
izations of social peers are stored in a short-term memory and can be selected as auditory
goals if the learner estimates that such imitation trials can provide competence progress at
this stage of its development. Thus, the learner not only decides which part of the sen-
sorimotor space to explore when it is in self-exploration mode, but it also decides when
to imitate adult vocalizations based on a measure of learning progress. Such a learning
strategy has been called strategic learning, where the learner makes active choices to decide
What, How, When and with/from Whom to learn (Lopes and Oudeyer, 2012; Nguyen and
Oudeyer, 2013). This is a generalization of the concept of active learning as used in machine



10.3. SELF-ORGANIZATION OF EARLY VOCAL DEVELOPMENT: THE ONSET OF IMITATION143

learning, and extends intrinsically motivated learning to the selection of learning strategies,
including the possibility to select the interaction with peers as a strategy to gain information
and improve one’s own world model.

In the following sections, we will present an outline of this model, as well as the results
of several experiments. These experiments will show how such a mechanism can explain the
adaptive transition from vocal self-exploration with little influence from the speech environ-
ment, to a later stage where vocal exploration becomes influenced by vocalizations of peers.
Within the initial self-exploration phase, we will see that a sequence of vocal production
stages self-organizes, and shares properties with infant data: the vocal learner first discov-
ers how to control phonation, then focuses on vocal variations of unarticulated sounds, and
finally automatically discovers and focuses on babbling with articulated proto-syllables. As
the vocal learner becomes more proficient at producing complex sounds, imitating vocaliza-
tions of peers starts to provide high learning progress explaining an automatic shift from
self-exploration to vocal imitation.

10.3.5 Model

In this section, we describe the models that we use for the vocal tract and auditory signals.
We describe the learning of the internal model of the sensorimotor mapping, and the intrinsic
motivation mechanism which allows the learner to decide adaptively which vocalization to
experiment at given moments during its development, and whether to do so through self-
exploration or through imitation of external sounds.

Sensorimotor system

Vocal Tract and Auditory System This computational model uses the articulatory
synthesizer of the DIVA model described in (Guenther, 2006)*, which is itself based on
Maeda’s model (Maeda, 1989). The model corresponds to a computational approximation
of the general speech production principles illustrated in figure 10.6.

The model receives 13 articulatory parameters as input. The first 10 are from a principal
component analysis (PCA) performed on sagittal contours of images of the vocal tract of
a human speaker, allowing to reconstruct the sagittal contour of the vocal tract from a
10-dimensional vector. The effect of the 10 articulatory parameters from the PCA on the
vocal tract shape is displayed figure 10.7. In this study, only use the 7 first parameters are
used (the effect of the others on the vocal tract shape is negligible), fixing the 3 last in the
neutral position (value 0 in the software). Through an area function, associating sections of
the vocal tract with their respective area, the model can compute the 3 first formants of the
produced signal if phonation occurs. Phonation is controlled through the 3 last parameters:
glottal pressure controlling the intensity of the signal (from quiet to loud), voicing controlling
the voice (from voiceless to voiced) and pitch controlling the tone (from low-pitched to high-
pitched). It is then able to compute the formants of the signal (among other auditory and
somato-sensory features) through the area function. Here, only the glottal pressure and
voicing parameters are used. In addition to the 7 articulatory parameters from the PCA, a
vocal command is therefore defined by a 9-dimensional vector. From the vocal command, the
synthesizer computes the auditory and somatosensory consequences of the motor command,
thus approximating the speech production principles of figure 10.6.

4 Available online at http://www.bu.edu/speechlab/software/diva-source-code
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Figure 10.6: Speech production general principles. The vocal fold vibration by the lung
air flow provides a source signal: a complex sound wave with fundamental frequency Fjp.
According to the vocal tract shape, acting as a resonator, the harmonics of the source
fundamental frequency are selectively amplified or faded. The local maxima of the resulting
spectrum are the formants, ordered from the lower to the higher frequencies. They belong
to the major features of speech perception and are used in the model of curiosity-driven
speech development (design adapted from L-J. Boé and S. Jacopin).

On the perception side, the model uses the first two formants of the signal, F'1 and F2,
approximately scaled between -1 and 1. A third parameter [ is also defined, which measures
the intensity (or phonation level) of the auditory outcome. I is supposed to be 0 when the
agent perceives no sound, and 1 when it perceives a sound. Technically, I = 1 if and only
if two conditions are checked: (1) both pressure and voicing parameters are above a fixed
threshold (null value) and (2) the vocal tract is not closed (i.e. the area function is positive
everywhere). In human speech indeed, the formants are not measurable when phonation is
under a certain threshold. This is modelled by setting that when I = 0, the formants do
not exist anymore and are set to 0. This drastic simplification is yet arguable in term of
realism, but what the model encodes here is the fact that no control of the formant values
can be learnt when no phonation occurs.

Dynamical properties Speech production and perception are dynamical processes and
the principles of figure 10.6 have to be extended with this respect. Humans control their vo-
cal tract by variations in muscle activations during a vocalization, modulating the produced
sound in a complex way. Closure or opening movements during a particular vocalization,
coupled with variations in phonation level, are able to generate a wide variety of modu-
lated sounds. A vocalization is here defined as a trajectory of the 9 motor parameters over
time, lasting 800 milliseconds, from which the articulatory synthesizer is able to compute
the corresponding trajectories in the auditory space (i.e. trajectories in the 3-dimensional
space of F'1, F2 and I). The agent is able to control this trajectory by setting 2 commands
for each articulator: one from 0 to 250ms, the other one from 250 to 800ms. Then, the
motor system is modeled as an overdamped spring-mass system driven by a second-order
dynamical equation®. Thus, the agent’s policy for a vocalization is defined by two vectors

5% + 2Cwod + wg (x — m) = 0, where z is a motor parameter, and m is the command for that motor

parameter. ¢ is set to 1.01, ensuring that the system is overdamped (no oscillation), and wg to g—’é (0.8
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Figure 10.7: Articulatory dimensions controlling vocal tract shape (10 dimensions, from left
to right and top to bottom), adapted from the documentation of the DIVA source code.
Each subplot shows a sagittal contour of the vocal tract, where we can identify the nose and
the lips on the right side. Bold contours correspond to a positive value of the articulatory
parameter, the two thin contours are for a null (neutral position) and negative values. These
dimensions globally correspond to the dimensions of movements of the human vocal tract
articulators. For example, Art; mainly controls the jaw height, whereas Arts rather controls
the tongue front-back position.

my and mo (one for each command) of 9 real values each (one for each motor parameter).
The policy space is 18-dimensional. The first command is applied for the beginning of the
vocalization to 250ms, the second one from 250ms to 800ms.

Figure 10.8A illustrates the process by showing a typical syllabic vocalization. In this
illustrative example, the controlled articulators are the first and third articulators of figure
10.7 (roughly controlling the jaw height and the tongue front/back dimensions), as well
as pressure and voicing. The two last ones are set to 0.5 and 0.7 respectively, for both
commands, to allow phonation to occur. The “jaw parameter” (artl on the figure) is set to
2.0 (jaw closed) for the first command and to —3.0 for the second one (jaw open). We observe
that these commands, quite far from the neutral position, are not completely reached by
the motor system. This is due to the particular dynamics of the system, defined with ¢ and
wp in the dynamical system. For the third articulator (art3), the commands are both at
2.0. We observe that, whereas the value 2.0 cannot be achieved completely at 250ms, it can
however be reached before the end of the vocalization.

This motor system implies interaction between the two commands, i.e. a form of co-
articulation. Indeed, a given motor configuration may sometimes be harder to reach if it is
set as the first command, because time allocated to reach the first command is less than for
the second command. Reversely, some movements may be harder to control in the second
command because the final articulator positions will depend both on the first and the second
commands (e.g., it is harder to reach the value —3.0 for the second command if the first
command is set to 2.0, than if the first command is set to —3.0, as seen in the example of

being the duration of the vocalization in seconds)
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Figure 10.8: An illustrative vocalization example. A) Articularory trajectories of 5 ar-
ticulators during the 800ms of the vocalization (4 articulators, from art4 to art7 are not
plotted for the sake of readability but display the same trajectory as art2). Circles at 250
and 800ms represents the values of the first and second commands, respectively, for each
trajectory. The first commands are active from 0 to 250ms and second ones from 250 to
800ms, as represented by dotted black boxes. The trajectories are computed by a second
order dynamical equation encoding a spring-mass system, starting in a neutral position (all
articulators set to 0). B) Resulting vocal tract shapes at the end of each command, i.e. at
250 and 800ms. Each subplot displays a sagittal view with the nose and the lips on the left
side. The tongue is therefore to the right of the lower lip. C) Sound wave resulting from the
vocalization. D) Trajectories of the 3 auditory parameters, the intensity I and the two first
formants F'1 and F'2. Dotted black boxes represent the two perception time windows. The
agent perceives the mean value of the auditory parameters in each time window, represented
by the circles at 250 and 650ms.
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figure 10.8).

These characteristics are the results of modeling speech production as a damped spring-
mass system, which is a common practice in the litterature (Markey, 1994, Boersma,1998;
Howard and Messum, 2011).

Figure 10.8B shows the resulting vocal tract shape at the end of the 2 commands (i.e.
at 250ms and at 800ms). We observe that the vocal tract is closed at the end of the first
command, open at the end of the second one.

Figure 10.8C shows the resulting sound. We observe that there is no sound during vocal
tract closure.

Figure 10.8D shows the resulting trajectories of auditory parameters. In our experiments,
we model the auditory perception of the agent of its own vocalization as the mean value
of each parameter I, F1 and F2 in two different time windows lasting 150ms: the first
one from 250 to 400ms, the second one from 650 to 800ms. The auditory representation
of a vocalization is therefore a 6-dimensional vector (I(1),1(2), F1(1), F1(2), F2(1), F2(2)).
Perceived auditory values are represented by circles on figure 10.8D. Note that the agent
does not have any perception of what happens before 250ms, and that I(1) and 1(2) can
take continuous values in [0, 1] due to the averaging in a given perception time window. We
will refer to the perceived “phone” of a given command for the perception occurring around
the end of that command, although such an association will not be assumed in the internal
sensorimotor model of the agent. Indeed, this sensorimotor system has the interesting
property that the perceptions in both time windows depend on both motor commands. In
the example of figure 10.8, the perception for the first command, i.e. the mean auditory
values between 250 and 400ms, would not be the same if the second motor command did
not cause the vocal tract opening.

Vocalization classification For the purpose of analyzing the experiments presented be-
low, three types of phones are defined according to the value of I for a given command.
In this description, we use common concepts like vowels or consonants to make an analogy
with the human types of phones, although this analogy is limited.

e Those where I > 0.9: , i.e. phonation occurs during almost all the 150ms of perception
around the end of the command. We call them Vowels (V).

e Those where I < 0.1, i.e. there is almost no phonation during the 150ms of perception
around the end of the command. We call them None (N).

e Those where 0.1 < I < 0.9, i.e. phonation occurs partially during the 0.15s of per-
ception around the end of the command. This means that the phonation level I has
switched during that period. This can be due either to a closure or opening of the
vocal tract, or to variations in the pressure and voicing parameters. We call them
Consonants (C), although they are sometimes more comparable to a sort of prosody
(when due to a variation in the phonation level).

This classification will be used as a tool for the analysis of the results in section 10.3.6, but
is never known by the agent (which only has access to the values of I, F'1 and F2).

Thus, each vocalization produced by the agent, belongs to the combination of 2 of these
3 types (because a vocalization corresponds to 2 commands), i.e. there are 32 = 9 types of
vocalizations: VV, VN, VC, NV, NN, NC, CV, CN, CC.

Then, we suggest to group these 9 types into 3 classes.
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e The class No Phonation contains only NN: the agent has not produced an audible
sound. This is due either to the fact the pressure and voicing motor variables have
never been sufficiently high (not both positive, as explained in the description of the
motor system) during the two 150ms perception periods, or that the vocal tract was
totally closed.

e The class Unarticulated contains VN, NV, CN, NC: the vocalization is not well-formed.
Either the first or the second command produces a phone of type None (I < 0.1, see
above).

e The class Articulated contains CV, VC, VV and CC: the vocalization is well-formed,
in the sense that there is no None phone. Phonation is modulated in most cases (i.e.
except in the rare case where the two commands of a VV are very similar). Note that
according to the definition of consonants, phonation necessarily occurs in both the
perception time windows.

It is important to note that the auditory values of these vocalization classes span sub-
spaces of increasing complexity. Indeed, whereas various articulatory configurations belong
to the No Phonation class, their associated auditory values are always null, inducing a
O-dimensional auditory subspace (i.e. a point). Regarding the Unarticulated class, the
associated auditory values span a 3-dimensional subspace because at least one command
produces a phone of type None (i.e. the corresponding auditory values are null). Finally,
in the Articulated classes, the auditory values span the entire 6-dimensional auditory space.
These properties will have important consequences for the learning of a sensorimotor model
by the agent, as we will see.

Internal sensorimotor model
6

During its life time, the agent iteratively updates an internal sensorimotor model by
observing the auditory results of its vocal experiments. We denote motor commands M
and sensory perceptions S. We call f : M — S the unknown function defining the physical
properties of the environment (including the agent’s body). When the agent produces a
motor command m € M, it then perceives s = f(m) € S, modulo an environmental noise
and sensorimotor constraints. In the sensorimotor system defined in the previous section,
M is 18-dimensional and S is 6-dimensional. f corresponds to the transformation defined
in section 10.3.5 and illustrated figure 10.8, and has a Gaussian noise with a standard
deviation of 0.01. By collecting (m, s) pairs through vocal experiments, the agent learns
the joint probability distribution defined over the entire sensorimotor space SM (therefore
24-dimensional). This distribution is encoded in a Gaussian Mixture Model (GMM) of 28
components, i.e. a weighted sum of 28 multivariate normal distributions”. Let us note Ggas
this GMM. It is learnt using an online version of the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977) proposed by Calinon (Calinon, 2009) where incoming data are
considered incrementally. Each update is executed once each sm_ step (=400) vocalizations
are collected. G gy is thus refined incrementally during the agent life, updating each time a

6The sensorimotor internal model and aspects of the intrinsic motivation system used in this model were
initially described in in a more general context where the goal was to compare various exploration strategies
in (Moulin-Frier and Oudeyer, 2013a,b)

"We empirically chose a number of components which is a suitable trade-off between learning capacity
and computational complexity.
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number sm__step of new (m, s) pairs are collected. Moreover, we adapted this online version
of EM to introduce a learning rate parameter o which decreases logarithmically from 0.1 to
0.01 over time. « allows to set the relative weight of the new learning data with respect to
the old ones.

This GMM internal model is used to solve the inverse problem of inferring motor com-
mands m € M that allow the learner to reach a given auditory goal s, € S. From this
sensorimotor model Ggys, the agent can compute the distribution of the motor variables
knowing a given auditory goal to reach s4, noted Ggar(M | s4). This is done by Bayesian
inference on the joint distribution, and results in a new GMM over the motor variables M
(see e.g. (Calinon, 2009)), from which the agent can sample configurations in M.

The sensorimotor system we specified in the previous section involves a 24-dimensional
sensorimotor space (18 articularory dimensions and 6 auditory ones). As we have already
noted, the three vocalization classes (No Phonation, Unarticulated and Articulated) span
subspaces of the 6-dimensional auditory space with increasing dimensionality. Learning an
inverse model using GMMs with a fixed number of Gaussians is harder, i.e. requires more
sensorimotor experiments, as the spanned auditory subspace is of higher dimensionality.
Thus, learning an inverse model to produce No Phonation requires fewer learning data
than learning an inverse model to produce various Articulated vocalizations, as the range of
sensory effect is much larger in the second case.

Intrinsically motivated exploration of dynamic auditory goals

In order to provide training data to the sensorimotor model, the agent autonomously and
adaptively decides which vocal experiments to make. The key idea is to self-generate and
choose goals for which the learner predicts that experiments to reach these goals will lead to
maximal competence progress. Below, we will present two series of experiments considering
two variants of this exploration mechanism. A first variant involves self-exploration without
considering vocalizations of social peers, whereas the second variant allows the learner to
actively decide when to try to imitate the vocalizations of its peers.

The specific model we use in the first series of experiments (see section 10.3.6) is a proba-
bilistic version of the SAGG-RIAC architecture (Baranes and Oudeyer, 2013). As explained
above, this architecture was itself an evolution of the model of curiosity-driven exploration
used in the Playground Experiment and presented above. It combines two principles: 1)
autonomous goal exploration; 2) self-selection of goals based on the maximization of empir-
ically measured learning progress. In practice, the learner self-generates its own auditory
goals in the sensory space S. One goal is here a sequence of two auditory targets encoded in
a 6-dimensional vector s, = (I(1), 1(2), F'1(1), F'1(2), F2(1), F'2(2)) (see section 10.3.5). For
each goal, it uses the current sensorimotor estimation to infer a motor program m € M in
order to reach that goal. Through the sensorimotor system, this produces a vocalization and
the agent perceives the auditory outcome s € S, hence a new (m, s) training data. Goals are
selected stochastically so as to maximize the expected competence progress (i.e. the learner
is interested in goals where it predicts it can improve maximally its competence to reach
them at a particular moment of its development). This allows the learner to avoid spend-
ing too much time on unreachable or trivial goals, and progressively explore self-generated
goals/tasks of increasing complexity. As a consequence, the learner self-explores and learns
only sub-parts of the sensorimotor space that are sufficient for reachable goals: this allows
to leverage the redundancy of these spaces by building dense tubes of learning data only
where it is necessary for control.
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We define the competence c¢ associated to a particular experiment (m, s) to reach the goal
54 as ¢ = comp(s,, s) = el®s~*I This measure is in [0, 1] and exponentially increases towards
1 when the Euclidean distance between the goal and the actual realization s = f(m) + €
tends to 0.

The measure of competence progress uses another GMM, Gy, learnt using the classical
version of EM on the recent goals and their associated competences. This GMM provides
an interest distribution Grps(S) used to sample goals in the auditory space S maximizing
the competence progress in the recent sensorimotor experiments of the agent. This was
firstly formalized in Moulin-Frier and Oudeyer, 2013a,b. Figure 10.9 provides a graphical
explanation of the process.

GMMinTxSxC S x C projection

0 -1 -08 -06 -04 -02 0 02 04 06 08 1

Interest distribution

) — 0
0 001 002 003 004 005 006 007 008 009 0.1 4 08 06 04 -02 0 02 04 06 08 1

Figure 10.9: Illustration of how the “interestingness” of auditory goals is computed. Top-
left: the recent history of competences of the agent, corresponding to blue points in the
space T' x S x C, where T is the space of recent time indexes (in R*), S the space of
recently chosen goals s, (mono-dimensional in this toy example) and C' the space of recent
competences of reaching those goals (in R1). For the sake of the illustration, the competence
variations over time are here hand-defined (surf surface) and proportional to the values in
S (increases for positive values, decreases for negative values). A GMM of 6 components,
G, is trained to to learn the joint distribution over T' x S x C represented by the six
3D ellipses. Projections of these ellipses are shown in 2D spaces S x C and T x C' in the
top-right and bottom-left plots. To reflect the competence progress in this dataset, we then
bias the weight of each Gaussian to favor those which display a higher competence progress,
that is measured as the covariance between time and competence for each Gaussian (in the
example the purple ellipse shows the higher covariance in the bottom-left plot). Gaussians
with a negative covariance between time T and competence C' (blue, black and red ellipses)
are weighted with a negligible factor, such that they do not contribute to the mixture. Using
Bayesian inference in this biased GMM, the distribution of interestingness Gyas(S) over the
goal space S is computed, favoring regions of S displaying the highest competence progress
(bottom-right).
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To summarize, the agent possesses the following abilities:

e Producing a complex vocalization, sequencing two motor commands interpolated in a
dynamical system. It is encoded by a 18-dimensional motor configuration m € M.

e Perceiving the 6-dimensional auditory consequence s = f(m) + € € S, computed by
an articularory synthesizer. f is unknown to the agent.

e Iteratively learning a sensorimotor model from lots of (m, s) pairs it collects by vocaliz-
ing through time. It is encoded in a GMM Ggjs over the 24-dimensional sensorimotor
space M x S.

o Controling its vocal tract to achieve a particular goal s4. This is done by computing
Gsm(M | sg), the distribution over the motor space M knowing a goal to achieve s,.

e Actively choosing goals to reach in the sensory space S by learning an interest model
Gy oin the recent history of experiences. By sampling in the interest distribution
Grm(9), the agent favors goals in regions of S which maximizes the competence
progress.

This agent is thus able to act at two different levels. At a high level, it chooses auditory
goals to reach according to its interest model Gj; maximizing the competence progress. At
a lower level, it attempts to reach those goals using Bayesian inference over its sensorimotor
model Ggys, and incrementally refines this latter with its new experiences. The combination
of both levels results in a self-exploration algorithm (Algorithm 1).

Algorithm 1 Self-exploration with active goal babbling (stochastic SAGG-RIAC architec-
ture).

1: initialise Ggpr and Gras
2: while true do
3: Sg ~ G]M(S)
m ~ GS]L[(M | Sg)
s=f(m)+e
¢ = comp(sg, S)
update(Ggnr, (m, s))
update(Grar, (Sq,¢))
end while

The agent starts in line 1 with no experience in vocalizing. Both GMMs have to be
initialized in order to be used. To do this, the agent acquires a first set of (m, s) pairs, by
sampling in M around the neutral values of the articulators (see figure 10.7). Regarding
the pressure and voicing motor parameters, the neutral value is at —0.25, which leads
to no phonation (recall that both these parameters have to be positive for phonation to
occur, section 10.3.5). This models the fact that the agent does not phonate in its neutral
configuration, and has at least to raise the pressure and voicing parameters to be able do do
it. The agent then executes this first set of motor configurations (mostly not phonatory),
observes the sensory consequences, and initialises Ggps with the corresponding (m, s) pairs
using incremental EM. Gp)y is initialised by setting the interest distribution Gras(S) to the
distributions of the sounds it just produced with this first set of experiences. Thus, at the
first iteration of the algorithm, the agent tries to achieve auditory goals corresponding to
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the sounds it produced during the initialisation phase. Then, in the subsequent iterations,
the interest distribution Gr(.S) reflects the competence progress measure, and is computed
as explained above.

Line 3, the agent thus selects stochastically s, € S with high interest values. Then it
uses Gsar(M | s4) to sample a vocalization m € M to reach s, (line 4). The execution of
m will actually produce an auditory outcome s (line 5), and a competence measure to reach
the goal, ¢ = comp(sg, s), is computed (line 6). This allows it to update the sensorimotor
model Ggps with the new (m,s) pairs (line 7). Finally, it updates the interest model Gy,
(line 8) with the competence ¢ to reach sq4

Active imitation system

In language acquisition and vocalization, the social environment plays naturally an impor-
tant role. Thus the model considers an active speech learner that not only can self-explore
its sensorimotor space, but can also learn by imitation. In a second series of experiments
(described below), the model is extended by integrating the mechanism described in the
previous section in the SGIM-ACTS architecture, which has been proposed in Nguyen and
Oudeyer, 2012.

We consider here that the learning agent can use one of two learning strategies, that are
selected adaptively:

e explore autonomously with intrinsically motivated goal babbling, as described previ-
ously,

e or explore with imitation learning. There are several forms of imitation, such as
mimicry, in which the learner copies the policies of others without an appreciation
of their purpose, or emulation, where the observer witnesses someone producing an
outcome, but then employs its own policy repertoire to reproduce the outcome (Call
and Carpenter, 2002; Lopes et al., 2010). As the learner a priori can not observe the
vocal tract of the demonstrator, it can only emulate the demonstrator by trying to
reproduce the auditory outcome observed, by using its own means, finding its own
policy to reproduce the outcome. The model considers here that the the social peer
has a finite set of vocalizations, and every time the learner chooses to learn by social
guidance, it chooses at random an auditory goal within this set to emulate.

The learner can monitor the competence progress resulting from using each of the strate-
gies. This measure is used to decide which strategy is the best progress niche at a given
moment: a strategy is chosen with a probability directly depending on its associated ex-
pected competence progress. Thus, competence progress is used at two hierarchical levels
of active learning, forming what is called strategic learning (Lopes and Oudeyer, 2012):
at the higher-level, it is used to decide when to explore autonomously, and when to im-
itate; at the lower-level, if self-exploration is selected, it is used to decide which goal to
self-explore (as in the previous model). Since competence progress is a non-stationary mea-
sure and is continuously re-evaluated, the individual learns to choose both the strategy
str € {autonomous_exploration, social _guidance} and the auditory goals s, € S to tar-
get, by choosing which combination enables highest competence progress.

For the particular implementation of SGIM-ACTS of this paper, we use the same formal-
ism and implementation as in Algorithm 1 and consider that the strategy is another choice
made by the agent. This leads to Algorithm 2, where the interest model Gj; now learns an
interest distribution as in section 10.3.5. The difference is that the space of interest is now the
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union of the strategy space {autonomous__exploration, social _guidance} and the auditory
space S. We call StrS this new space StrS = {autonomous__exploration, social _guidance} x
S . Hence Gpys is a distribution over StrS (Algorithm 2, line 3). If the self-exploration
strategy is chosen (str = autonomous__exploration), the agent acts as in Algorithm 1. If
the social guidance strategy is chosen (str = social guidance, line 4), the learner then
emulates an auditory demonstration s, € S chosen randomly among the demonstration
set of adult sounds (line 5), overwriting s, of line 3. It then uses its sensorimotor model
G to choose a vocalization m € M to reach sg4, by drawing according to the distribution
Gsm(M | sg) (line 7), as in the self-exploration strategy. The execution of m will produce
an auditory outcome s (line 8), from which it updates its models Gy and Ggps (lines 10
and 11).

Algorithm 2 Strategic active exploration (active goal babbling and imitation with stochas-
tic SGIM-ACTS architecture).

1: Initialise Ggps and Gy

2: while true do

3: (St’l“, Sg) ~ GIM(StTS)

if (str = social _guidance) then
54 < random auditory demonstration from the ambient language

end if

m ~ Gsu(M [sg)

s=f(m)+e

¢ = comp(sg, S)

10:  update(Ggar, (m,s))

11:  update(Grar, (str, sq,c))

12: end while

Thus, this new exploration algorithm is augmented with yet another level of learning,
allowing to choose between different exploration strategies. This strategy choice moreover
uses the same mechanism as the choice of auditory goals, by means of the interest model
Grum-

10.3.6 Experiments: transition from self-exploration to imitation

We first present experiments where individuals in the model learn in a pure self-exploration
mode (Algorithm 1), without any social environment or sounds to imitate. In a second se-
ries of experiments, an auditory environment is introduced to study the influence of ambient
language (Algorithm 2)8.

8In these experiments, the model does not consider that infants and adults have different vocal tracts,
and thus that the pitch and formant of vocalizations are different. In addition, this model does not study
the social interaction aspect of the teacher and in particular how the behavior of the adult in response
to the learner behavior can influence speech learning. Adressing the difficult matching problem has been
addressed in other models, in particular by considering the dynamics of social interaction, such as in the
work of Howard and Messum (2014) and Miura, Yoshikawa and Asada (2012).
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Emergence of developmental sequences in autonomous vocal exploration

The first series of experiments involves nine independent simulations of Algorithm 1 with
the same parameters but different random seeds, of 240.000 vocalizations each?. Most of
these nine simulations display the formation of a developmental sequence, as we will see.
Before describing the regularities and variations observed in this set of simulations, let
us first analyse a particular one where the developmental sequence is clearly observable.
Figure 10.10 exhibits such a simulation. We observe three clear developmental stages, i.e
three relatively homogeneous phases with rather sharp transitions. These stages are not pre-
programmed, but emerge from the interaction of the vocal productions of the sensorimotor
system, learning within the sensorimotor model, and the active choice of goals by intrinsically
motivated active exploration. First (until ~ 30.000 vocalizations), the agent produces mainly
motor commands which results in no phonation or in unarticulated vocalizations (in the
sense of the classes defined section 10.3.5). Second (until ~ 150.000 vocalizations), phonation
almost always occurs, but the vocalizations are mostly unarticulated. Third, it produces
mainly articulated vocalizations.

The visualisation of the developmental sequence of the 9 independent simulations is
provided in figure 10.11. This figure shows important interindividual variations whereas
initial conditions are statistically similar due to initialisation in line 1 of Algorithm 1.
These variations can be understood through the interaction of the sensorimotor system f,
the internal sensorimotor model Ggps and the interest model Gy, resulting in a complex
dynamical system where observed developmental sequences are particular attractors (see
e.g. van Geer, 1991; Smith, 1993). Moreover the sensorimotor and the interest models
are probabilistic, thus inducing a non-negligible source of variability all along a particular
simulation. Another factor is that using an online learning process on a GMM can result in
a sort of forgetting, leading sometimes to the re-exploration of previously learnt parts of the
sensorimotor space'®. However, the sequence No phonation — Unarticulated — Articulated
appears as a global tendency, as shown in Table 10.1. We observe that despite variations,
most simulations begin with a mix of no phonation and unarticulated vocalizations, then
mainly produce unarticulated vocalizations, and often end up with articulated vocalizations.
An analogy can be made with human phonological systems, which are all different in the
details but display strong statistical tendencies (Maddieson, 1984; Schwartz et al., 1997b).

This suggests that the agent explores its sensorimotor space by producing vocalizations
of increasing complexity. The class no phonation is indeed the easiest to learn to produce for
two reasons: the rest positions of the pressure and voicing motor parameters do not allow
phonation (both around —0.25 at the initialisation of the agent, line 1 of Algorithm 1) ;
and there is no variations on the formant values, which makes the control task trivial as soon
as the agent has a bit of experience. There is more to learn with unarticulated vocalizations,
where formant values are varying in at least one part of the vocalization, and still more with
articulated ones where they are varying in both parts (for the first and second command).

Figure 10.12 shows what happens in the particular simulation of figure 10.10 in more
details.

This developmental sequence is divided into 3 stages, I, IT and III, stages being separated
by vertical dark lines on figure 10.12, identical on each subplot (stage boundaries are the

9Each simulation involves several hours of computing on a desktop computer, due to the complexity of
Bayesian inference and update procedures.

10This is why the simulations are limited to 240.000 vocalizations each, in order to avoid this unwanted
effect of forgetting. However, the fact that the system is able to adaptively re-explore sensorimotor regions
that have been forgotten is an interesting feature of curiosity-driven learning.
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Figure 10.10: Self-organization of vocal developmental stages. At each time step ¢ (x-axis),
the percentage of each vocalization class between ¢ and t 4+ 30.000 is plotted (y-axis), in a
cumulative manner (sum to 100%). Vocalization classes are defined in section 10.3.5. Roman
numerals shows three distinct developmental stages. I: mainly no phonation or unarticulated
vocalizations. II: mainly unarticulated. III: mainly articulated. The boundaries between
these stages are not preprogrammed and are here manually set by the authors, looking at
sharp transitions between relatively homogeneous phases.

Types of sounds || Stagel Stage IT | Stage III | Stage IV
produced

No phonation- || 7 0 2 0
Unarticulated

Unarticulated 0 7 0 3
Articulated 0 2 4 0

Other 2 0 1 0

Table 10.1: Count of vocalization stages in the 9 simulations of the supplementary data.
The “types of sounds produced” (first column of the table) correspond to the most prominent
class in a given stage, where stages are manually set, looking at sharp transitions between
relatively homogeneous phases. These developmental stages are therefore subjective to a
certain extent, in the sense that another observer could have set different ones (but hopefully
also would observe major structural changes). “No phonation-Unarticulated” means a mix
between No phonation and Unarticulated classes (as defined in section 10.3.5 in that stage.
A number 2z in a cell means this type of vocalizations (row) appears x times at the n'" stage
of development (column) in the set of 9 simulations. Two to four developmental stages were
identified in each simulation, explaining why the “Stage I’ and “Stage II” columns sum up
to 9 (the total number of simulations), but not the “Stage III” and “Stage IV” columns.
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Figure 10.11: Developmental sequences emerging from the 9 simulations for the experiment
described in section 10.3.6. Each subplot follows the same convention as in Figure 10.10.
The simulations have been ordered, also in a subjective manner, from those which display
a clear developmental sequence of the type No phonation — Unarticulated — Articulated
to those less organized (from left to right, then top to bottom).
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Figure 10.12: Evolution of the distribution of auditory goals, motor commands and sounds
actually produced over the life time of a vocal agent (the same agent as in figure 10.10).
The variables are in three groups (horizontal red lines): the goals chosen by the agent in
line 3 of Algorithm 1 (top group), the motor commands it inferred to reach the goals using
its inverse model in line 4 (middle group), and the actual perceptions resulting from the
motor commands through the synthesizer in line 5 (bottom group). There are two columns
(1st and 2nd), because of the sequential nature of vocalizations (two motor commands per
vocalization). Each subplot shows the density of the values taken by each parameter (y-
axis) over the life time of the agent (x-axis, in number of vocalizations since the start). It
is computed using an histogram on the data (with 100 bins per axis), on which we apply
a 3-bins wide Gaussian filter. The darker the color, the denser the data: e.g. the auditory
parameter I actually reached by the second command (7(2), last row in ‘Reached”, 2nd
column), especially takes values around 0 (y-axis) until approximately 150.000%" vocalization
(x-axis), then it takes rather values around 1. The three developmental stages of figure 10.10
are reported at the top.
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same than in figure 10.10).

In stage I, until approximately 30.000 vocalizations, the agent produces mainly no phona-
tion and unarticulated vocalizations. We observe that the agent set goals for I(1) either
around 0, either around 1, whereas the goals for I(2) stay around 0 (last row in “Goals”).
By trying to achieve these goals, the agent progressively refines its sensorimotor model and
progresses by raising the values of the pressure and voicing motor parameter in the first
command (two last rows of the section “Motor commands”, 1st column). Other articula-
tors remain around the neutral position (value 0). The agent is learning to phonate. The
percentages of vocalization belonging to each vocalization class is provided Table 10.2.

[ NN | CN [ NC | VN [ NV | VW | CV | VC | CC |
(453 % [134% [06% [189% [45% [99% [66 % [07% [02% |

Table 10.2: Percentage of vocalization classes produced in stage I of the studied develop-
mental sequence.

Then, in stage II, from 30.000 to approximately 150.000 vocalizations, the agent is mainly
interested in producing vocalizations which begin with a Vowels (I(1) > 0.9, see the defi-
nition of phone types in section 10.3.5) and finish with a None (I(2) < 0.1). During this
stage, it learns to produce relatively high F'1(1) values, in particular by decreasing the
Arty (1) parameter (approximately controlling the jaw height, see figure 10.7). Regarding
the second command, although the agent self-generates various goals for F1(2) and F2(2),
and produces various motor commands to try to reach them, the sound produced mostly
corresponds to a None (I(2) = 0, and therefore F'1(2) = F2(2) = 0). This is due both to the
negative value of the voicing parameter (last row in “Motor commands”, second column),
and to the fact that the vocal tract often ends in a closed configuration due to the poor
quality of the sensorimotor model in this region (because phonation occurs very rarely for
the second command, leaving the agent without an adequate learning set). During this
stage, the agent explores a limited part of the sensorimotor space both in time (sound only
for the first command) and space (around the neutral position), until it finally manages to
phonate more globally at the end of this stage. This could be correlated to the acquisition
of articulated vocalizations. The percentages of vocalization belonging to each vocalization
class is provided in Table 10.3.

[ NN ] CN [ NC [ VN [ NV [ VWV [ CV [ VC ]| CC ]
[40% [269% [01%[622% [01% [34%[05% [25%[02% |

Table 10.3: Percentage of vocalization classes produced in stage II of the studied develop-
mental sequence.

Finally, in stage III (until 150.000 to the end), phonation almost always occurs during
both the perception time windows, producing VV vocalizations (see I densities, both for
goals and reached values). This is much harder to achieve for two reasons: firstly because
there is a need to control a sequence of 2 articulators movement in order to reach two
formant values in sequence (i.e. F1(1), F1(2), F2(1), F2(2)) instead of one in the previous
stage (the second command leading to no sound), and secondly because the position of the
articulators reached for the second command also depends on the position of the articulators
reached for the first one (a kind of coarticulation due to the dynamical properties of the
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motor system). We observe that the range of values explored in the sensorimotor space is
larger than for the previous stage (both in motor and auditory spaces). The percentages of
vocalizations belonging to each vocalization class is provided in Table 10.4.

[ NN [ CN [ NC [ VN [ NV ]| VV | CV | VC | CC |
(16 % [37% [01% [121% [08% [675% [65% [68% [ 08 % |

Table 10.4: Percentage of vocalization classes produced in stage III of the studied develop-
mental sequence.

Influence of the auditory environment

In a second set of experiments, a social environment is integrated and provides a set of
adult vocalizations. As explained in section 10.3.5, the learner has an additional choice: it
can explore autonomously, or emulate the adult vocalizations. An “ambient language” is
here modeled as a set of two speech sounds. To make it coherent with human language
and the learning process observed in development, we chose speech-like sounds, typically
vowel or consonant-vowel sounds. In terms of our sensorimotor descriptions, the adult
sounds correspond to I1 with low values and 12 with high values. Figure 10.13 shows such
vocalizations corresponding to those used by Teacher 1 in figure 10.14.

Adult vocalization 1 Adult vocalization 2
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Figure 10.13: The two vocalizations of the adult Teacher 1 used in figure 10.14, with the
same convention as in figure 10.8 .

Figure 10.14 shows a significant evolution in the agent’s vocalizations. In the early
stage of its development, it can only make a few sounds. Most sounds correspond to small
values of I1(2), F1(1), F1(2), F2(1) and F2(2), as in the first developmental stage of the
previous experiment (see Table 10.2 and figure 10.12). Therefore the agent is not able
to reproduce the ambient sounds of its environment. In contrast, in later periods of its
development, its vocalizations cover a wider range of sounds, with notably I(1) and I(2)
both positive, which means it now produces more articulated sounds. The development of
vocalizations for a self-exploring agent in the last section showed that it progressively was
able to produce articulated vocalizations, which we observed in several simulations at the
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Figure 10.14: Vocalizations of the learning agent in the early and mature stages of vocal
development. A) All auditory outcomes s produced by the agent in its early stage of vocal-
ization are represented by blue dots in the 6-dimensional space of the auditory outcomes.
The adult sounds are represented in red circles. The actually produced auditory outcomes
only cover a small area of physically possible auditory outcomes, and correspond mostly to
I(2) = 0, which represent vowel-consonant or consonant-consonant types of syllables. B)
The auditory outcomes produced by the infant in its mature stage of vocalization cover a
much larger area of auditory outcomes and extend in particular over areas in which vocal-
izations of the social peer are located.

end of its development. This effect has been reinforced by the environment: with articulated
vocalizations to emulate, it produces this class more regularly.

Another important result is that mature vocalizations can now reproduce the ambient
sounds of the environment: the regions of the sounds produced by the learner (blue dots)
overlap the teacher’s demonstrations (red circles). It seems that, during the first vocaliza-
tions, the agent cannot emulate the ambient sounds because they are too far away from its
possible productions, and thus it can hardly make any progress and approach these demon-
strations. Figure 10.15 confirms this interpretation. In the beginning, the agent makes
no progress with emulation, and it is only around ¢t = 450 that it makes progress with
the emulation strategy. At that point, as we can see in figure 10.16, it uses equally both
strategies. This enables the agent to make considerable progress from ¢ = 450 to t = 800.
Indeed, once its mastery improves and the set of sounds it can produce increases, it then
increasingly emulates ambient sounds. Once it manages to emulate the ambient sounds well,
and thus its competence progress decreases, it uses less the emulation strategy and more
the self-exploration strategy.

To analyse better this emulation phenomenon and assess the influence of the ambient
language, we run the same experiment with different acoustic environments. We used two
other sets of speech sound demonstrations from simulated peers, and analysed the auditory
productions of the agent in figure 10.17. The first property that can be noted is that in the
early phase of the vocal exploration (figure 10.17. A and C), the auditory productions of
the two agents are alike, and do not depend on the speech environment. On the contrary,
the mature vocalizations vary with respect to the speech environment. With Teacher 1, the
productions have their values F2(1) and F2(2) along the axis formed by the demonstration
(figure 10.14. A, last column). Comparatively, Teacher 2’s speech sounds have different
F1(1), F1(2), F2(1) and F2(2). As represented in figure 10.17. B, the two speech sounds
now differ mainly by their F'1(1) (instead of F'1(2)) and in their subspace (F2(1), F2(2)) the
speech sounds have approximately rotated from those of Teacher 1. The produced auditory
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Figure 10.15: Progress made by each strategy with respect to the number of updates of
the sensorimotor model Ggp;. These values have been smoothened over a window of 100
updates. For t < 450, the agent makes no progress using emulation strategy. After ¢ = 450,
both strategies enable the agent to make progress.
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Figure 10.16: Percentage of times each strategy is chosen with respect to the number of
updates of the sensorimotor model Ggj,;. These values have been smoothened over a window
of 100 updates. For t < 450, the agent mainly uses self-exploration strategy. When its
knowledge enables it to make progress in emulation, it chooses emulation strategy until it
can emulate the ambient sounds well (and its competence progress decreases).
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Figure 10.17: Vocalizations of the learning agent in the early and mature stage of vocaliza-
tion in two different speech environments (Teacher 2 and Teacher 3). A and C) All auditory
outcomes produced by the vocal learner in its early stage of vocal development are repre-
sented by blue dots in the 6-dimensional space of the auditory outcomes. The sounds of
the environment are represented in red circles. The auditory outcomes only cover a small
area, and do not depend on the speech environment. B and D) The auditory outcomes pro-
duced by the infant in its mature stage of vocal development cover a larger area of auditory

outcome, which depend on the speech environment.

outcomes of the learner look like they have changed in the same way. Whereas the reached
space (blue area) seemed to be along axis F1(2) and F2(2) and little on F1(1) or F2(1)
for Teacher 1, it has extended its exploration along F1(2) and F2(2) for Teacher 2. With
Teacher 3, the demonstrations are more localised in the auditory space, with F1(1) < 0 and
F2(2) > 0. The effect we observe in figure 10.17. D is that the exploration is more localised
too: the explored space is more oriented toward areas where F'1(1) < 0 and F2(2) > 0. Thus,
these three examples strongly suggest a progressive influence of the auditory environment,
in the sense that the first vocalizations in figure 10.14 and 10.17 are very similar, whereas we
observe a clear influence of the speech environment on the produced vocalizations in later
stages.

Altogether, the results of this second series of experiments provide a computational
support to the hypothesis that the progressive influence of the ambient language observed
in infant vocalizations can be driven by an intrinsic motivation to maximize competence
progress. At early developmental stages, attempts to imitate adult vocalizations are cer-
tainly largely unsuccessful because basic speech principles, such as phonation, are not yet
mastered. In this case, focusing on simpler goals probably yields better progress niches
than an imitative behavior. While they are progressively mastered, the interest in these
goals decreases whereas the ability to imitate adult vocalizations increases. Imitation thus
becomes a new progress niche to explore.



Chapter 11

Discovering Language as a Tool to
Influence Others

Beyond the role of intrinsically motivated exploration for bootstrapping vocal develop-
ment and imitation, what leads children to discover linguistic communication? How can
they discover that certain speech sounds can be used as a currency to manipulate attention
and action of social peers, and achieve joint tasks with them?

In this chapter, we describe a model studying further the potential role of intrinsically
motivated exploration in these discoveries. In particular, we will show how autonomous
exploration can enable individuals to discover progressively their body, how to interact with
tools, and how to use speech sounds as tools to influence social peers.

11.1 Discovery of tool use and language: the role of in-
trinsic motivation

In the model described in the previous section, individuals could only explore how to pro-
duce sounds with their vocal tract. They were not grounded in a multimodal environment
with objects affording other forms of sensorimotor activities, and the only goals they could
generate were auditory goals. Thus, linguistic communication, defined as the ability to pro-
duce signals to manipulate the attention and action of others to achieve a goal, was not
part of their world’s possibilities. In the Playground Experiment, robots were situated in a
richer environment where they had the ability to explore a variety of actions ranging from
body movement to sound production with their vocal tract, and could similarly perceive the
outcomes of their actions across several visuo-auditory-proprioceptive modalities. Towards
the end of most runs of this experiment, curiosity-driven learning robots engaged in forms

1Several parts of this chapter reuse text or graphs, with permissions, from the following articles co-
authored with Linda Smith (section 11.2) and Sébastien Forestier (section 11.1):
Oudeyer, P-Y. and Smith. L. (2016) How Evolution may work through Curiosity-driven Developmental
Process, Topics in Cognitive Science.
Forestier S, Oudeyer P-Y. 2017. A Unified Model of Speech and Tool Use Early Development. Proceedings
of the 39th Annual Meeting of the Cognitive Science Society.
Citations of the work described here should refer to these articles.
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of simple vocal interaction with a social peer. However, the cognitive architecture used in
the Playground Experiment did not enable individuals to form and pursue goals. They
were restricted to exploring questions such as “what would happen if I did action A?”. As a
consequence, linguistic communication was also beyond the reach of discoveries they could
make.

A recent model has explored what may happen if a learner, equipped with a mechanism of
intrinsically motivated goal exploration, could explore a rich body and environment affording
object manipulation (including tools), speech production and perception, and a social peer
producing contingent vocalizations. This mechanism and environment were presented in
(Forestier and Oudeyer, 2017), and are illustrated in figure 11.1. In this environment, a
simulated robot placed in front of a table with several objects, and a social peer model is
situated on the other side of the table. The robot can produce actions either through arm
movements or vocal tract movements. The arm has 3 degrees of freedom and movements
are parameterized by a 21 dimensional dynamic movement primitive (DMPs are simple
parametric dynamical systems used in robotics to produce structured movement, Ijspeert
et al., 2013). The vocal tract is based on the DIVA model (Guenther, 2006), and includes
7 degrees of freedom which global movements are parameterized by a 28D dimensional
dynamic movement primitive. There are 4 objects on the table, which can potentially be
grasped by the hand of the robot, or interact with each other (one of the object, the stick,
can be used to grasp other objects). These objects can be positionned either within reach
of the hand, or out of reach of the hand but within reach of the stick, or out of reach of
both hand and stick (see figure). They are regularly randomly repositionned across the
table in experiments. The social peer model is also capable to produce actions with its arm
(it can take an object and place it at another location) as well as produce vocalizations.
It is programmed to respond contingently over certain actions of the learning robot: if the
learning robot touches one of the objects, then the social peer produces the speech sound
corresponding to the name of this object. Also, if the learning robot produces a speech
sound that is sufficiently similar to the name of one of the object, the social peer grasps
this object and places it just in front of the learner, within hand reach. At other random
times, when the learning robot does not interact with objects, the social peer also produces
speech sounds that are not related to the scene (distractors). The learning robot can perceive
objects locations and track their trajectories. It also perceives auditory trajectories of sounds
produced by itself or by the caretaker (as a sequence of key points in the formant space).

Initially, the learning robot has no prior knowledge of the potential affordances of its
environment: it does not know whether objects can be moved with its arm, or that objects
can interact with each other (it does not know the concept of tool). It also does not know
that vocal tract movements can produce sounds, and that these sounds can produce effects
on the environment (in the social peer in particular). It does not know either that the social
peer can produce contingent reactions. To discover its environment, the learning robot
experiments through intrinsically motivated goal exploration (see top part of figure
11.1), going repeatedly through the following steps:

e Perception of world state: at the beginning of each experimental episode, it first
observes the state of the environment;

e Sampling of self-generated goal: it then samples an imagined goal. It can sample
different kinds of goals: moving the hand or any of the objects along a target trajectory
(e.g. “Move object B along trajectory starting from initial state and passing though key
points aq, ..., a5"); produce an acoustic trajectory passing through randomly imagined
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Figure 11.1: In this experiment, a curiosity-driven learner (left agent) explores by autonomously
sampling goals to discover which effects can be produced by its body actions. Its action repertoire
comprises the possibility to move its arm and hand, as well as to move a simulated vocal tract.
The effects it can perceive are trajectories of objects (simulated visual system), as well as sound
trajectories (simulated ear). Initially the learner knows nothing about the potential relations be-
tween actions and effects, and it does not even know which effects are possible (e.g. what object
movements and what sounds are possible in this environment). On the table, several objects are
positioned, and can be in different zones. One of the objects can be used as a tool to move other
objects, e.g. retrieving them when they are beyond hand reach. On the other side of the table, a
simulated social peer utters the speech names of objects when the learner touches them, as well as
other disctractor speech sounds when it does not touch objects. It also grasps an object and puts
it within hand reach of the learner when the learner produces a sound that is sufficiently close to
the name of this object. However, from the learner’s perspective, the social peer is initially just one
object among others, and there is no a priori knowledge about what are its affordances. Initially,
most self-generated goals are either impossible or too difficult to achieve for the learner, except
goals for moving the hands around. This produces a diversity of hand movement, leading to the
discovery of skills for pushing within reach objects. Then, the learner discovers that acting in a
peculiar way on one of the objects (the stick) enables to move at the same time other objects that
are beyong hand reach. Simultaneously, the learner also makes progress towards controlling its
vocal tract, discovering how to produce sounds that look like the ones uttered by the social peer.
Finally, in a later stage, the learner discovers that when some objects are beyond reach, even using
the stick, another tool can be used to retrieve them: they can utter a particular speech sound (name
of this object) that will influence the behaviour of the social peer to bring it closer. Therefore, the
learner discovers the linguistic functionality of speech: it can be use a a tool to influence others.



166CHAPTER 11. DISCOVERING LANGUAGE AS A TOOL TO INFLUENCE OTHERS

key formant configurations; produce an acoustic trajectory similar to a randomly
selected speech sounds produced by the social peer;

e Infer action through current internal world model: Once a goal has been
selected, it uses its current internal world model to infer which action has a high
probability to achieve this goal, starting from the current initial state of the world.
This action may be either an arm movement or a vocal tract movement;

e Run the action and observe outcomes: The inferred action is then performed,
and outcomes are observed (potential movements of all objects and potential sounds
perceived);

e Update internal world model and goal sampling process: These outcome
observations, combined with the initial state, the goal and the action, are then used to
update the internal world model. Hindsight learning is used (this is a form of counter-
factual learning): even if the initial goal was not achieved, other goals imagined a
posteriori and matching the observations are used to update the world model (e.g. if
the robot’s goal was to move object A on the left, but its action made it move object
B on the right, then the world model is updated to learn how to move object B on the
right). Also, the feedback observation on the world can be used to update the goal
sampling process to bias the selection of goals towards goals that provide maximum
expected learning progress (however, in the model below, a simpler mechanism of
random goal sampling is used).

As initially the learning robot has no knowledge of its environment, it will fail at most of
the goals it samples, and in particular it will not be able to move any object. However, there
are two kinds of outcomes that produce rich and contingent feedback from the environment
initially: hand movement and self-produced speech sounds. Indeed, even if initial goal
trajectories of the hand are not achieved, most motor commands sent to the arm produce
actual movement of the hand: through hindsight learning, this enables to learn fast how to
move around the hand. Similarly, even if initial random auditory goals are not achieved, most
movements of the vocal tract produce auditory trajectories which enables the development
of initial vocal skills through hindsight learning.

As sampling random goals about the hand leads to discover a high-diversity of hand
movements (Colas et al., 2018), this increases the probability to discover that arm move-
ments can also move objects (at least in some contexts corresponding to the reachable zone),
including the stick. Once a few movements of these objects have been found, learning of
object manipulation inside the reachable zone is bootstrapped. At this stage, the learning
robot does not know yet how to retrieve and move objects that are beyond hand reach.
However, generating goals to move the sticks increases the probability to discover how it
can interact with other objects, and finally that it can be used as a proxy to retrieve objects
beyond hand reach. A first major cognitive milestone is here reached: from the point of
view of an external observer, the learning robot has discovered a form of tool use, i.e. that
objects beyond hand reach can sometimes be retrieved with an arm movement that first
grasps the stick.

In parallel of these early steps of learning of to move objects with the arm, vocal learn-
ing also progresses. After an initial self-exploration and progress of how vocal tract move-
ments produce self-generated sounds, bootstrapping the robot’s knowledge of the vocal
tract-sounds mapping, the learning robot starts to make progress towards imitating sounds
produced by the social peer (both object names and distractors). At some point, when these
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speech sounds become similar enough to the names of objects used by the social peer, the
social peer starts to make contingent responses by grasping the corresponding objects and
placing it in front of the learner robot. Thanks to the mechanism of hindsight learning,
this enables in turn the learner to discover that “if it had selected the goal of retrieving
object A in front of it, then producing sound S would have made the social peer realize the
appropriate action to achieve the goal”. In particular, the learner discovers that such speech
sound production strategy to get the social peer to place the toy in front of it is the most
successful strategy to retrieve objects when they are beyond the reach of the stick.
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Figure 11.2: Competence to retrieve an object depending on the object’s initial position, after
80000 iterations. 0 % means that competence to retrieve a toy there is as bad as with random
agents, 100% says that agents perfectly retrieve a toy there.
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Figure 11.3: Strategy preferences depending on the distance of the toy. The two vertical bars
shows the hand and stick limits.

Figures 11.2 and 11.3 summarize the motor and speech communication skills and strate-
gies discovered by the learner at the end of a typical simulation. On figure 11.2 , one
visualizes that the learner is able to retrieve and move objects relatively well in all areas of
the table: within hand reach, within stick reach, and beyond hand and stick reach. This
latter capability shows that it successfully uses the speech production strategy as a tool to
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manipulate its peers action and help it to retrieve objects: it has discovered a core aspect of
the linguistic function of speech. This relative use of strategies is further depicted on figure
11.3 , where one observes that the vocal strategy is selected much more often to retrieve
objects beyond the reach of hand or stick. Finally, figure 11.4 shows the distribution of
errors for imitation speech sounds of the social peer: one observes that errors are in average
smaller for speech sounds that correspond to objects manipulated in the scene than for
distractor speech sounds. This is explained by the fact that once the speech strategy to
retrieve objects is discovered, the learner targets speech sounds referring to objects much
more often than distractors (as they are targeted not only for vocal imitation, but also as
tools to retrieve objects), producing more varied local exploration of vocal tract movement
which improves the internal model of how these object specific sounds are produced.
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Figure 11.4: Distribution of accuracy of imitations of caregivers’ sounds after 80000 iterations.
Below 0.4 vocal error, sounds are recognized as imitations by the caregiver. Imitations of toy
names are more accurate than imitations of distractors.

11.2 An evo-devo perspective: from curiosity to the evo-
lution of language

In the models we discussed in this chapter and in the previous one, the developmental pat-
terns exhibit a form of behavioral and cognitive epigenesis, as proposed by Gottlieb (1991).
Developmental structures in these models are neither learnt from “tabula rasa” nor a pre-
determined result of an innate “program”™ instead, they self-organize out of the dynamic
interaction between constrained cognitive mechanisms (including curiosity, learning, and
abstraction), the morphological properties of the body, and the physical and social envi-
ronment that itself is constrained and ordered by the developmental level of the organism
(Oudeyer, 2011; Smith, 2013; Thelen and Smith, 1996). This self-organization includes
the dynamic and automatic formation of behavioral and cognitive stages of progressively in-
creasing complexity, sharing many properties with infant development (Piaget, 1952; Miller,
2002).

Such robotic models and experiments operationalize theories of epigenesis in behavioral
development (e.g., Gottlieb, 1991; West and King, 1987; Lickliter and Honeycutt, 2009), as
well as the dynamic systems conceptualization of development (Thelen and Smith, 1996). In
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particular, they allow us to see in detail how the interaction of heterogeneous mechanisms
and constraints at several scales could form a dynamical system where developmental struc-
tures emerge. Such emergent developmental structures have deep implications for evolution.
In particular, they constitute a reservoir of behavioral and cognitive innovations which can
be later on recruited for functions not yet anticipated, and at both developmental and
evolutionary scales: this is exaptation (Gould, 1991).

First, the results show that modality-independent generic mechanisms for curiosity-
driven exploration of the body and its interactions can lead to the emergence of basic
speech skills, vocal imitation, and finally the use of speech as a tool to influence other, i.e.
language. This suggests that in principle the infant may develop initial language capabilities
without an innate specific bias for learning speech and language, and without a teleological
knowledge that such skills will be recruited later on, e.g. for achieving joint tasks with their
social peers.

Second, such mechanisms should be related to the models we discussed in chapters 6,7,
and 8, about the formation and evolution of shared vocalization systems in populations of
individuals. Such population models have shown that when vocal learners are equipped
with mechanisms of spontaneous vocal self-exploration and progressively tune their vocal-
izations to match those of their neighbors, conventionalized systems of sounds can be formed
spontaneously at the group level from an initial state where each individual only produces
random vocalizations. In these models, mechanisms for systematic vocal babbling were
pre-programmed and specific to the vocal modality. Yet, computational experiments pre-
sented in chapters 10 and 11 showed that principled and modality-independent mechanisms
for curiosity-driven exploration can drive learners to explore their vocal tract just as they
explore the movement of their arms, observing the effects it produces on external objects,
including social peers. Combining these models leads to a startling hypothesis: the inter-
action of individuals intrinsically motivated to learn about their body, including their vocal
tract, and their affordances, can self-organize as a side effect shared speech systems at the
group level. Similar analyses has been offered for the origins of joint visual attention (Yu
and Smith, 2013; Deak, et al; 2014).

Further, arguments presented in Barto (2013) have shown that the evolutionary origins
of such an intrinsic motivation to learn can be explained because it maximizes long-term
evolutionary fitness in rapidly changing environmental conditions (e.g., due to human social
and cultural structures, which can evolve much faster than the phylogenetic scale). In such a
context, Singh et al. (2010) have shown with computer simulations that even if the objective
fitness/reward function of an organism amounts to survive and reproduce, it may be more
efficient to evolve a control architecture that encodes an innate surrogate reward function
rewarding learning per se.

Mechanisms of information seeking can thus evolve independently of language, but yet,
as argued above, may have spontaneously bootstrapped early forms of speech and language,
both at the individual and population level. This may have opened the possibility for a
later recruitment, selection and refinement of language functionalities that were not initially
foreseen. This suggests a potentially strong role for curiosity-driven developmental process
in the evolution of early stages of language.
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11.3 What about other animals?

Such an evolutionary scenario raises interesting issues in the comparison between humans
and other animals. As argued earlier, motivational mechanism of curiosity interacts with
other motivational mechanisms like food or mate searching, and its weight in motivational
arbitration may vary widely across species equipped with such curiosity. Hence, the high
degree of competition for survival in many species can be expected to promote avoidance
of risk, where aversive motivational systems overcome strongly the expression of curiosity-
driven exploration. The multimodal systematicity and the extent to which open-ended
free play and curiosity is expressed in humans, where children are comparatively highly
protected for a long period, is actually unrivalled in the animal kingdom (Power, 1999).
This might explain why many structures could emerge and be recruited out of curiosity in
humans as opposed to other species. Yet, this remains an entirely open question, and points
to an important research challenge related to the extension of robotic models presented
in this chapter: while here the models focused on the self-organization of developmental
structures produced by a single motivational mechanism (curiosity), it is of high importance
to understand the consequences of coupling it with other forms of extrinsic, possibly aversive
motivational systems, and study the impact on developmental dynamics.



Chapter 12

Understanding through Building

My aim in this book has been to contribute to our comprehension of the mechanisms that
led to the development of speech in humans. Comprehension — a word whose Latin roots
equate to the ideas of 'together’ and ’seize’ — means having a mental handle on these mech-
anisms, being able to point to their component parts and follow their logic. But if we are
seeking to manipulate these mechanisms in our minds, what better way to start than to try
manipulating them with our bodies, to ’grasp them in our hands’ and to play with them, in
the way that a child plays with the objects it encounters and so discovers how they work.
In the same way, computer and robotic models that let us take these mechanisms apart
and put them back together, playing with their separate elements as if they were pieces of
Lego, can play several important roles. They give us a new formal, constructive scientific
language for expressing theories of human speech and natural language that naturalizes
these theories, anchoring them in their biological and physical substrates. They let us for-
mulate new conjectures about humans that give rise to new studies and experiments to
either support or refute them. Using them we can build in order to understand, delving in
silico into the morphogenesis of speech, in constant interaction with other human scientists
and social scientists. Our approach has involved linking things together: linking different
disciplines, linking the different facets of the complex system represented by speech and the
development of speech, linking using models that are not reductionist, but systemic.

Research into the origins of speech is only a few decades old, and so has only just begun
to illuminate one corner of a very large, very dark room. Considerable work remains in filling
out, organizing and making selections in the space of theories. Building computer models in
collaboration with specialists in speech and the life sciences is one way of generating some
more light.

The artificial systems presented in this book have shown how vocal structures, sharing
crucial properties with systems of human speech, could arise spontaneously in a population
of individuals in which the codes and their properties had not been pre-programmed, out
of neural structures and sensorimotor interactions that are very simple. The individuals in
these models do not even differentiate between sounds produced by other individuals and
sounds that they themselves produce. If communication is defined as the sending of a signal
by an individual intended to modify the internal state or behaviour of another individual,
then the individuals in the computational models presented in chapters 6-9 cannot be said
to communicate. Also, these models did not include any pressure for linguistic communica-
tion which would push the individuals to form repertoires of sounds contrasting with each
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other. Furthermore, indidivuals do not imitate each other in the sense that they do not
immediately reproduce the vocalizations that they hear and do not store them explicitly in
memory so as to be able to reproduce them later. Yet, thanks to the self-organizing prop-
erties of the complex system formed by the neural coupling between perceptual and motor
modalities in each individual, and by the coupling between individuals due to the simple fact
that they inhabit an environment where they hear each other, the simulations showed that
an organized system of vocalizations emerged spontaneously. While at the start they only
produce anarchic, holistic and inarticulate vocalizations, after several hundred interactions
they produce discrete combinatorial vocalizations, with phonotactic rules, and convention-
alized (all the individuals in the same simulation share the same system of vocalizations
at the end, and individuals in different simulations generate different systems). Individuals
are even subject to phenomena of acoustic illusions formed and acquired culturally, as are
humans. Finally, a statistical study of the repertoires of vocalizations allows us to find the
same regularities as those of human languages, in particular as regards the vowels (and when
morpho-perceptual constraints similar to those of humans are used).

These models have shown how the existence of phonemes and phonemic coding is not
necessarily a result of nonlinearities in the correspondence between vocal motor configu-
ration and the sounds produced. Even when individuals were given abstract linear vocal
tracts, discrete combinatorial vocalizations still appeared. This fuels an alternative hypoth-
esis to Stevens’s quantal theory of perception (Stevens, 1972), or to Carré and Mrayati’s
theory of distinctive regions (Carré and Mrayati, 1992). Stepping beyond the formation
of phonemes, these models have shown how the interplay between neuronal circuits, at
first random and competing to be activated, were able spontaneously to generate regular
repertoires of vocalizations, organized according to elementary rules of syntax.

However, results from the models also indicated that these morpho-perceptual nonlin-
earities, in other words properties of the body, had a strong influence on the statistical
distribution of phonemes. Using a model of the vocal tract and of the cochlea, the simula-
tions generated systems of vocalizations with the same regularities as in human languages,
particularly regarding vowels. Here we have a good illustration of the power of computer
and robotic models: in systems that model all the components of an individual, it is pos-
sible to set up experiments where the different properties of the body and of the nervous
system can be modified at will and independently of each other. This type of experiment,
which would be impossible to conduct on living beings, allows the different properties to be
considered separately and their respective roles to be better understood. The body becomes
an experimental variable, thus opening up fascinating epistemological perspectives (Kaplan
and Oudeyer, 2008).

In these computational models, systems of vocalizations are self-organized. Indeed, the
components with which the individuals are initially endowed are of a lower level of complex-
ity than those of the speech codes that are generated. The properties characterizing these
components, as well as their local interactions, are qualitatively different from those charac-
terizing the global structure formed by the speech code. The system’s dynamics illustrates
how the same mechanism can form a whole complex set of structures comprising the speech
code, starting with assumptions of a lower order of complexity.

In moving the search for the origins of systems of vocalizations to the wider context of
the evolution of forms in biology and in performing experiments in silico, we discover new
maps that chart previously unknown paths leading towards the sources of speech. There al-
ready existed a number of proposed explanations for the structures of speech described here
which relied on classical neo-Darwinian functionalist argumentation. For example, Lindblom
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(1992) proposed that the statistical regularities in vowel inventories could be explained in
terms of optimal perceptual distinctiveness, and thus in terms of their effectiveness in com-
munication. Studdert-Kennedy (1998) proposed that phonemic coding enables transmission
of information at a rate that drastically increases the power of communication, and thus that
it is the result of an adaptation for communicating more effectively. But as D’Arcy Thomp-
son began to show in On Growth and Form, when seeking to understand the evolution of
a particular biological form, it is not enough simply to identify the adaptive criteria that
allowed the natural selection of this form. It is also necessary to understand the mechanisms
of generation, growth and morphogenesis. Alongside the mechanisms of genetic variation
in the replication of organisms, there are ontogenetic and social development processes con-
straining and guiding the exploration of the space of forms. Just like in complex inorganic
systems where organized structures form spontaneously, in the organic world the complex
system of a developing organism has processes of self-organization that play a central role:
they structure the Darwinian evolution of life forms.

Using computer models to explore and test this kind of process of morphogenesis and self-
organization has thus given rise to several different evolutionary scenarios. These scenarios
are predicated on the evolution of two specific prerequisites that are central to these models,
and out of which speech codes form spontaneously: first, plastic neural circuits connecting
the motor and the perceptual aspects of speech and, secondly, the existence of babbling, that
is to say a spontaneous and systematic exploration of the vocal organ. One can hypothesize
that these two elements evolved specifically in response to an evolutionary pressure towards
linguistic communication. This is the classical adaptationist explanation: the mechanisms of
simple, generic morphogenesis in our models are able to fill this explanation out by showing
that the structures to be genetically “wired” do not need to be as complex as might have
been imagined.

However, the generic nature of these two elements also suggests two complementary
exaptationist scenarios in which the initial structures of speech emerged spontaneously as
a collateral effect of the evolution of independent language capacities. In the first scenario
the perceptuo-motor neural circuitry and the babbling behavior are both parts of the basic
biological package required for adaptive vocal imitation, which could have adapted for rea-
sons that have nothing to do with language and can be seen in several animal species that
also manifest structured vocalizations.

In the second scenario, vocal babbling is simply a corollary of spontaneous “body bab-
bling”, driven by an intrinsic motivation to explore the body and its environment, by cu-
riosity and the pure pleasure of learning, that is present in humans far more than in other
animals. The robotic experiments presented in chapter 10 suggest that vocal interaction
itself could emerge as one of the developmental structures resulting spontaneously from the
dynamic interplay between curiosity-driven exploration, the learning system, the body of
the robot and its physical and social environment. And these initially non-linguistic devel-
opmental mechanisms could lead to the morphogenesis of vocal structures that are discrete,
combinatorial and shared within a particular group. Thus, at the sources of speech one may
find this desire to learn, that we have in common with our ancestors, this internal force that
makes babies explore their own bodies, their physical surroundings, and progressively lets
them discover other people.
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