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Abstract. Human behavior is complex, but structured along individual
and social lines. Robotic systems interacting with people in uncontrolled
environments need capabilities to correctly interpret, predict and respond
to human behaviors. This paper discusses the scientific, technological and
application challenges that arise from the mutual interaction of robotics
and computational human behavior understanding. We supply a short
survey of the area to provide a contextual framework and describe the
most recent research in this area.

1 Introduction

Personal robots are predicted to arrive in homes and everyday life in the coming
decades, and assist humans physically, socially, and/or cognitively. They are ex-
pected to become an integral part of the lives of people with physical or cognitive
disabilities, for example, allowing the elderly or the handicapped to maintain a
comfortable and autonomous life in their homes for a prolonged period of time.
Furthermore, with a drastic paradigm shift in the industrial robotics, robots are
also becoming closer to humans in the factories, where we observe a shift towards
robots that can be intuitively and dynamically re-programmed by workers, and
work jointly with them to achieve manufacturing and maintenance tasks.

Nevertheless, considering that the robots becoming so ubiquitous would result
in their operating in uncontrolled environments and interacting with non-expert
users, several challenging issues need to be addressed. One of these issues is
human behavior understanding: in order to act in a useful, relevant, and socially
acceptable manner, robots will need to understand the behavior of humans at
various levels of abstractions (ranging from identifying the current action of the
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human to identifying goals in the discussion of two humans) and at various time
scales (ranging from milliseconds to minutes and days).

A large body of work exists in the field of computational human-behavior
understanding, and the International Workshop of Human Behavior Under-
standing, previously organized with a focus on pattern recognition and ambi-
ent intelligence, brings together scientific and technological responses to some
of the challenges in this field [56,57]. While some of the proposed methods can
be readily re-used for robots, novel scientific and technological challenges arise
when one considers achieving human behavior understanding in the context of
human-robot interaction:

– First, humans who interact with a social robot behave in ways that differ
significantly from natural human-human interaction, and there is an associ-
ated new repertoire of behaviors and contextual interpretations. Thus, it is
paramount to design techniques that understand human behavior specifically
in the context of human-robot interaction.

– Second, and in a related manner, interaction with an intelligent system (be
it a robot, or any artificial or ambient intelligence system) in the loop can
produce dynamical evolution of human behavior, where new semiotic con-
ventions can emerge [53]. New dynamic conventions (for example, through
linguistic alignment) can be negotiated between a particular robot and a par-
ticular human, and a corresponding dynamic update of human behavior
understanding is needed.

– Third, what makes robots specific as compared for example to classical intel-
ligent ambient systems is that they typically have a rich repertoire of motor
behaviors and actions. To be useful, relevant and socially acceptable, they
need to act properly. This implies that techniques for human behavior un-
derstanding need to provide internal representations that are compatible
and reusable by the robot’s action system.

A second key challenge is the capability of robots to adapt to and learn from hu-
mans. Each human user may typically have its own preferences and habits, which
a robot needs to infer. The interaction between learning and human behavior
understanding can be expressed in two complementary directions:

– Robots need to be capable of learning dynamically how to interpret, and thus
understand human multi-modal behavior. This includes for example learning
the meaning of new linguistic constructs used by a human [18], learning to
interpret the emotional state of particular users from para-linguistic or non-
verbal behavior [34,58,38], characterizing properties of the interaction [44] or
learning to guess the intention, and potentially the combinatorial structure
of goals [39] of a human based on its overt behavior [1].

– Robots also need to be capable of learning new tasks or refining existing
tasks through interaction with humans, for example using imitation learning
or learning by demonstration [59,9,4,42]. This heavily involves the capacity
for decoding linguistic and non-linguistic cues [34,58,38], feedback and guid-
ance provided by humans, as well as inferring reusable primitives in human
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behavior [39]. Thomaz and Breazeal [66] have for example shown that prior
studies of how humans use social cues to teach can be transferred into highly
useful mechanisms used by a robot to learn from humans. Such a study, re-
lated to the problem of how non-expert humans can teach new words to a
robot, is presented in this volume [18].

Given that human behavior understanding in general needs to be at least par-
tially learnt, and that learning new tasks from humans require human behavior
understanding, a long-term challenge for research is to study what mechanisms
can allow the joint developmental and potentially simultaneous learning of feed-
back/guidance/cueing models and new task models (see for example [35]).

At the same time, robotics offers stimulating opportunities for improving hu-
man behavior understanding, and especially to allow a deeper analysis of the
semantics and structure of human behavior. Indeed, it is now widely known that
the human action system mediates the understanding of other people’s actions,
in particular through the mirror neurons system [19]. Humans tend to interpret
the meaning and the structure of other’s behaviors in terms of their own ac-
tion repertoire, which acts as a strong helping prior for this complex inference
problem. Robots are also embodied and have an action repertoire, which can
be similarly used to decode and interpret human behavior. For example, in this
volume, Schillaci et al. show how generative action forward and inverse models
of previously learnt motor primitives can be used to recognize ambiguous human
movements, or to infer the target of a movement [61]. Mangin and Oudeyer show
how biases on action representations can not only allow to infer the underlying
combinatorial structure of complex movements demonstrated by humans, but
also can be used to reproduce them [39].

In the next sections, we deal with the major contact points of human behavior
understanding and robotics. Section 2 is a brief overview of systems for sensing
human behavior, including pervasive systems, action and activity recognition.
Section 3 discusses the social and affective aspects of human behavior from a
robotics standpoint. Section 4 focuses on human-robot interaction, and Section 5
describes recent issues in imitation and learning from demonstration. Before
concluding, we review a few relevant application areas briefly in Section 6 to
show the practical implications of this line of research.

2 Sensing Human Behavior

The first task of a robot interacting with humans in uncontrolled environments is
to sense the location of the interacting parties, as well as to recognize the relevant
actions and activities. Since a lot of information can be gained by analyzing the
context of interaction, multiple pattern recognition tasks are overlapped for this
challenge.

2.1 Pervasive Systems

Pervasive systems describe a paradigm in which computational elements en-
hance interaction and intelligence of environments and objects of interaction
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in a person’s daily life. While many sensors are used to collect data to guide
these systems, visual sensors provide perhaps the richest data over short peri-
ods [54]. François Brémond describes five levels of computer vision functionality
for understanding a scene: those of detection, localization, tracking, recogni-
tion and understanding. Especially for localization, vision based sensors provide
the highest accuracy for acceptable convenience levels. While recently popular-
ized RGB-D camera technologies provide fast and accurate body tracking, most
RGB-D cameras operate in limited ranges, and only under controlled illumina-
tion conditions. For mobile robots, the use of these cameras have proven to be
very useful, as face-to-face interaction with humans usually occurs over small
distances. The depth camera based approaches also seem to help with the high
computational demands of the traditional vision-based solutions.

Cameras installed in a smart environment are typically static, configured to
cover a maximal area of interest. It is possible to use multiple cameras to deal
with problems of occlusion and view angles that may not be adequate at any
given situation, but multi-camera systems require more complex algorithms to
integrate information coming from different cameras, and are subsequently more
difficult to deploy. In [14] a low-cost silhouette-based pose representation is ob-
tained from multiple cameras and fused for action recognition.

It is obvious that installing sensors on a robot is fundamentally different than
deploying the sensors on a smart environment. While the former provides a
certain flexibility, it is limited by resource constraints of the robot. A promising
approach to overcome some of these limits is the combination of sensors in a
smart environment with the sensors on the robot. In [23], a Bayesian framework
is described where a ceiling mounted camera is used for detection and tracking
of people in conjunction with a laser range finder located on a mobile robot.

2.2 Action and Activity Recognition

Understanding human action mostly boils down to finding good representations
of the sensed primitives. The chosen representation should be rich enough to dif-
ferentiate between the action classes targeted by the application, but often it is
not chosen to be much richer than that. The reason for this is purely pragmatic;
more powerful representations require correspondingly complex training proce-
dures, more training samples for learning, and longer computation time during
operation. Consequently, the human body, for instance, is often represented by
a graph structure made up of nodes representing landmark points on the body,
and edges that connect these nodes in a fixed topology. Refinement on such a
representation may be achieved by adding more landmarks (i.e. nodes) to the
body parts being modeled.

In approaches where interest points do not necessarily correspond to known
landmarks, space-time corners and similar ‘salient’ points are detected and used
for learning spatio-temporal representations of actions [33]. In the present vol-
ume, Çeliktutan et al. propose an approach to solve the point set matching
problem for establishing the correspondence between an action, represented by
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interest points, to a template [13]. In [14], silhouettes are used for action recog-
nition. The action template in this case is a bag of key poses representing the
action in a temporal sequence.

3 Social and Affective Signals

Action recognition literature mostly focuses on simple actions, performed by a
single actor [48]. A broad class of actions, however, are social in nature, and
require either detailed analysis of multiple actors performing in tandem, or the
distinction of very fine cues that can easily change the meaning of an action
semantically. For instance, it takes a very small cue, like the creasing of the eye
corners to change the meaning of a smile. Social signal processing arose from the
need of intelligent systems interacting with humans to interpret and reproduce
social signals, and to increase the sensitivity of the computer (or of the robot)
to the interacting person’s emotional and mental state [7,55]. Social signals are
communicative or informative signals or cues “that directly or indirectly pro-
vide information about ‘social facts’: social interactions, social emotions, social
attitudes, evaluations and stances, social relations, and social identities.” [47].

3.1 Multimodal Analysis of Social Signals

Humans convey social information in many different ways. Facial expressions,
posture, gait, body and hand gesture, speech, vocal prosody, and nonverbal cues
like turn-taking behavior can all contain information relevant for interactions.
Not all these signals are consciously or cognitively produced. In the present vol-
ume, Vincze et al. discuss problems that arise when people provide a certain
information in a vague or approximate way, as well as the case where detectable
cognitive qualities are associated with conveying information, like hesitation or
hastiness [68]. An important point we made in the Introduction section of this
paper is that semiotic conventions need to be established between a robot and a
human in communication. While vagueness can arise because of an information
gap, it can also be a device to leave open the goals designated in the communi-
cated message. What would, for instance, be the benefit of employing vagueness
when communicating with a robot? It can very well be to set up a situation
where the robot decides on the correct level of abstraction or a most plausible
resolution of the vague reference by examining other information available to
it. This is a flexibility people have in human-human communication, and would
eventually require in human-robot communication.

In natural interactions, humans also emit signals that have no real counterpart
for robots. Research into human behavior understanding creates methods of
analyzing these signals, which will open up new response patterns for robotic
systems. In [38], an algorithm is described to determine a laughter index from
visual input. This research is part of the EU-ICT FET Project ILHAIRE, which
is aimed at endowing machines with automated detection, analysis, and synthesis
of laughter. The authors use psychophysical descriptions of the laughter process
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and propose a set of features including shoulder and body movement energy
and periodicity. Obviously, a better understanding of the features that lead to
accurate detection of laughter will also help us build systems that can synthesize
realistic instances of laughter.

3.2 Perception of Affect

Emotions are important modifiers of human behavior, serving to enrich the re-
sponse palette, but also allowing faster and contextualized decisions to help the
human function better. Part of the importance of emotions also comes from the
fact that humans are quite adept at recognizing emotional displays in others, and
this forms the backbone of a social existence. In fact, this capability is so strong
that humans easily attribute affect even to technological artifacts, as the well
known Heider-Simmel study has demonstrated with simple moving geometric
shapes [22]. In [58], Hylozoic Soil, a responsive architectural geotextile environ-
ment, is used to induce affective responses in viewers. Basic emotions like anger,
sadness and happiness can be conveyed with simple movements of these dynamic
structures. The authors also establish that there are gender differences in the
perception of these affective movements [58]. These studies confirm that social
interaction between humans and robots cannot ignore the affective dimension.

Movement is rarely used for automatic affect analysis of humans. In face to
face communication, robots can observe the facial expressions of the interacting
humans, as well as analyze the voice for affective signals. These are the most
typically used modalities for affect analysis. In the present volume, Lim and
Okuno show that a robot can also use the gait of a person to determine affective
states [34]. In their approach, speed, intensity, irregularity, and extent features
are extracted from the gait and speech of persons to determine affective states
like happiness, sadness, anger, and fear. The advantage of using gait is that
the face may not be available to a robot at all times, and the movement and
resolution of the face may make emotion recognition difficult.

Ziemke and Lowe characterize emotion as (a) being closely connected to em-
bodied cognition, (b) grounded in homeostatic bodily regulation, and (c) a pow-
erful and useful organizational principle for modulation of behavioral and cogni-
tive mechanisms [70]. Their focus is on maintaining emotion as an integral part
of the internal environment of a robot, and as they admit, the role of emotion
in social interactions is not addressed in their work, but they do note that the
interplay of internal (i.e. individual) and external (i.e. social) aspects of emotion
is still not very well known [3]. Robotic platforms can be excellent experimental
tools for probing into these relatively unexplored areas.

4 Human-Robot Interaction

One of the long term ambitious goals of robotics research is to have robots ca-
pable of seamlessly integrating themselves in our daily environments. Therefore,
recognizing, interpreting, and reasoning about the human behavior is a critical
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skill for a robot that co-inhabits the human environments and interacts with
humans on a regular basis. Particularly difficult challenges in human behavior
understanding from the robotics point of view are the necessity to perform the
processing using the limited computational resources on board, and using the
sensors that can be mounted on a robotic platform.

4.1 Interacting with Robots

In general, the human-robot interaction (HRI) research can be divided into two
main categories:

– Human-centered HRI investigates issues like the design and usability of
proper interaction interfaces, robot platforms, and behaviors through exten-
sive user studies.

– Robot-centered HRI focuses on algorithms, engineering innovations, and
other computational approaches that would improve the overall performance
of the interaction.

Although there is no clear distinction, the majority of the research on syn-
thesizing behaviors, facial expressions and whole body gestures, and the devel-
opment of proper interaction media fall into the human-centered HRI branch,
especially from the validation point of view, while perceiving and interpreting
behaviors, recognizing speech, and interactive learning applications fall into the
robot-centered HRI branch.

A good example of the first approach is [28] in this volume, which reports
the use case development for an outdoor robotic tour guide. In this work, ab-
stractions of human behaviors appropriate for robot tour guides were developed.
These abstractions form the basis of implemented robotic behaviors, which are
then assessed in the real application scenario, where the robot meets visitors in
a fairly unconstrained manner.

4.2 Closing the Interaction Loop

In the present volume, Fischer and Saunder investigate how people’s initial ex-
pectations from an interaction, and their increasing experience and acquaintance
with the robot over prolonged interaction sessions affect the way people tend to
interact with robots [18]. Speech-based interaction has been heavily studied over
the past decade. Grounding spatial commands given using unrestricted natural
language for commanding a robot to navigate in the environment and manipulate
objects have been studied in [65,24,29].

Humans also use gaze and gestures heavily to narrow down the uncertainties
about the context when conversing verbally. Especially, forming joint attention
through modeling the gaze of a human can be very useful in human-robot collab-
oration scenarios or when a human teacher teaches tasks or concepts involving
the objects in the environment [69,63]. In [69], object saliency is used in con-
junction with head pose estimates to allow a humanoid robot to determine the
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visual focus of attention of the interacting human, while in [63] a fixed mapping
between head pose directions and gaze target directions was not assumed, and
models are investigated that perform a dynamic (temporal) mapping implicitly
accounting for varying body/shoulder orientations of a person over time, as well
as unsupervised adaptation.

Closing the interaction loop requires robots that behave closer to humans,
and have more exploratory behavior than currently allowed for. An important
concept related to the exploration capabilities of the robot is the notion of “Sym-
biotic Autonomy”. Accepting the fact that the robot has physical and cognitive
limitations, and assuming the robot is also aware of some of its limitations,
symbiotic autonomy advocates the benefits of engaging with the humans in the
environment in a symbiotic relationship so that the robot does tasks for people,
and asks people for help whenever its capabilities fall short of dealing with a
certain situation [50]. Human interaction with the objective of asking for help
raises new challenges like how and where to find humans who would likely pro-
vide help [51,52], and if there are more than one human present in the scene,
whom to approach, as well as how to approach. Especially for the latter case,
the ability to infer the intent of people as well as their predicted movement tra-
jectories can drastically improve the way the robot interacts with the humans,
and hence, the quality of the help it receives.

5 Imitation and Learning from Demonstration

Imitation is a process of paramount importance in both human-human and
human-robot interaction. It is used for diverse functions, ranging from inter-
action regulation and social bonding to learning new knowledge and new com-
petencies from others. In the recent years, imitation has been highly explored
in various robotics contexts: its role for natural, intuitive and usable human-
robot social interaction [46], robot learning of new tasks from demonstration
[6,4], and its origins and functions in the course of epigenesis in developmental
robotics [2,27,5]. Imitation learning in particular poses fundamental and chal-
lenging scientific problems [45], related to what, when and who to imitate, and
it may be achieved at various levels of abstractions. Lopes et al. [36] describe
three main levels of abstraction in imitation, which are respectively addressed
by three chapters in this book: Mimicking behavior and trajectory-level imita-
tion [44], imitation mediated by the action system and motor primitives [61],
and imitation of goals and intentions [39].

The first level of abstraction in imitation is mimicking, where imitation con-
sists of directly trying to reproduce the observed movements without an attempt
to infer their underlying structure or goals [36]. A large amount of methods
and approaches have been developed within this approach, and more particu-
larly in the context of imitation learning where many researchers have studied
how machine learning regression techniques could be used to reproduce smooth
and generalizing trajectories out of sets of noisy human demonstrations (e.g.
[6,11,20,12]). Besides robot learning of new skills by trajectory-level imitation, it
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is also highly useful that robots be able to detect when two humans, or a human
and a robot, are imitating each other [44]. Michelet et al. propose a combined
computer vision and machine learning approach, which targets automatic iden-
tification of imitative interaction among humans [44]. A useful feature of this
approach for easy deployment in the real-world is that the approach is capable
of analyzing fine aspects of movements without the need to identify and track
human skeletons.

The second level of abstraction in imitation leverages the mediation of the
action repertoire, and consists in first interpreting observed behavior in terms
of one’s own repertoire of motor primitives, which are then re-used to gener-
ate the imitation [36]. Such approaches have been gaining popularity in robot
learning recently, in particular because such an approach allows to reduce the
dimensionality of movement and behavior representations meaningfully, which in
turn often allows for better robustness and generalization [41,26]. A central ques-
tion within these approaches, both in biology and robotics, is to understand how
these motor primitives form initially. Some works have explored various learn-
ing techniques that allow to automatically infer and learn motion primitives
from observation of human behaviors, e.g. [60,32,31,40]. In the present volume,
Schillaci et al. study a complementary question [61]: once motor primitives have
been learnt - in this case with the help of an annotated database -, how can they
be used to recognize human actions and disambiguate potential targets? Using
such a motor primitive representation, in the form of paired forward and inverse
models, is highly useful, since it can allow direct reproduction of the observed
behavior.

The third level of abstraction in imitation is goal imitation [36]. Here, the
imitator tries to infer the intention, or the goal of the observed behavior, and
then tries to reproduce this goal, possibly with different means (for example with
a different motor policy). Mathematically, this amounts to learning the hidden
cost function that the observed behavior may try to maximize, and then using
this cost function to define a surrogate optimization/learning problem which the
imitator has to solve. From a theoretical point of view, these approaches have
been studied in two fields, optimal feedback control [49] and inverse reinforce-
ment learning (IRL) [1], respectively. In recent years, they have been applied
to imitation learning in robotics, where they have been shown to be powerful
for generalization and robust to environment change at the same time [1,67].
For example, Abbeel and Ng[1] showed how autonomous helicopters could learn
to achieve acrobatic flights better than professional human demonstrators using
this approach. Lopes et al. [37] showed how active learning techniques could
be used to increase the efficiency of IRL. In the present volume, Mangin and
Oudeyer explore a frontier of these approaches [39]: how can a robot learn the
combinatorial structure of the hidden goals underlying demonstrated behaviors?
Previous approaches assumed that observed behavior corresponds to a single
hidden cost function/goal. On the contrary, Mangin and Oudeyer consider the
case when the demonstrator has a repertoire of hidden goals and only produces
behaviors which concurrently target several goals. The proposed approach relies
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on establishing a bridge between inverse feedback control techniques and dic-
tionary learning techniques [25]. Like [61], [39] infers a motor representation of
observed behaviors of a demonstrator, which allows the learning system to both
recognize and reproduce behavior with adequate generalization.

6 Applications

In the future, we envision robots that not only assist humans in domestic en-
vironments, but also interact with them in public spaces and factories. These
robotic applications will require proper social interactions to be maintained be-
tween robots and humans. We will move from the current situation in which
robots carry out certain tasks without any interaction with humans (e.g. au-
tomotive factory) to situations in which humans and robots will co-work, and
subsequently robots becoming co-workers and co-inhabitants [21], carrying out
tasks of increasing complexity that require understanding the behavior of hu-
mans. Even the simple task of cooperatively carrying a table by a human and
a robot [64], requires the synchronization of the individual’s movements, which
can only be achieved if the other’s behavior is correctly analyzed in real-time
with the correct resolution and level of abstraction.

In this section, we give some application examples to make the requirements
more concrete.

6.1 Socially Assistive Robotics

One of the envisioned applications of robotics is assisting specific human popula-
tions, such as children, elderly people, and patients. These are tasks that require
specific expertise in relatively restricted domains, embodiment, and most impor-
tantly, a social aspect that makes robots preferable to automated systems that
are less suited to display and interpret social and affective signals. Socially as-
sistive robotics defines the robot’s goal to be the creation of “close and effective
interaction with a human user for the purpose of giving assistance and achieving
measurable progress in convalescence, rehabilitation, learning, etc.” [17]. Some
related applications are robots as exercise coaches, evaluating the moves of the
interacting humans [16], and guiding robots providing context-dependent infor-
mation to people [28].

In these applications human behavior understanding will be crucial for inter-
preting the human needs and requirements, but also for understanding the mood
and for taking actions to manage it appropriately. Understanding human moods
and needs requires having some basic functionality. One of them is understand-
ing the visual focus of attention of humans while interacting with robots. This
is addressed in this volume [63].

Applications in which robots interact with humans have increased largely
in the last years thanks to the development of the Microsoft Kinect sensor.
The sensor’s ability of obtain 3D-images at a low cost, and the availability of
libraries with functionalities such as human body segmentation, have boosted
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the development of HRI applications. Most of these applications are related with
entertainment, although they can be expanded to education. However, the use
of infrared lighting makes the sensor being surface dependent (e.g. on black
surfaces the reflection is very limited), and not appropriate to be used outdoors.
Therefore, complementary sensors need to be used in applications with those
constraints.

6.2 Playful Interactions

The work of Cynthia Breazeal and others has established that people interacting
with robots will treat the robot as a social entity [8,10]. Consequently, robots
have the potential to be much more than elaborate toys in children’s games.
In social games of children, interactions are not pre-determined, but emerge
through mutual interaction. The ideal game partner is thus one that adapts to
a game scenario, and one that can assume one of many different roles, each
as coherent as possible in the social and affective displays that belong to the
designated role. The contribution of human behavior understanding to this kind
of a scenario would be the detailed analysis of gaming roles to create the coherent
role models, as well as real-time observation of the playing partners to determine
which mode should be selected and put into action.

A less ambitious, but worthy goal is to use robots as mediators in playful
interactions. A very important research direction is for instance the work with
autistic children, who may shun social contact in the form provided by their
peers, but may come to like what a social robot has to offer. An example is the
work of Michaud and Théberge-Turmel, who used robust robotic toys in play ex-
periments with children to obtain promising results [43]. The AURORA project
is an important initiative in this area with the aim of to encouraging autistic
children “to become engaged in a variety of different interactions important to
human social behavior” [15]. Another good example of toy robots for interacting
with children is the Keepon robot, which is capable of conveying limited emotion
and attention, promoting social playful interaction [30].

The basic idea that underlies these applications is that play is a fundamental
activity in learning social interactions. While human behavior understanding has
been used in gaming scenarios in the design phase, to specify interaction scenar-
ios, real-time behavior analysis is only recently being integrated into games [62].

7 Conclusions

In this introductory paper of the 3rd International Workshop on Human Be-
havior Understanding, our primary aim was to articulate the points of contact
between robotics and human behavior understanding. It is clear that progress in
the latter will have direct bearing on the design and implementation of robots
that have social skills and interact with humans in more natural ways. The
proper approach to do this is not mere imitation of the human behavior, but
goes through a deeper understanding of the abstract processes leading to par-
ticular behavior and ways of interaction, so as to let the counterparts emerge in
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the interacting robots. Obviously, a lot of basic skills must be in place before
this can be achieved.

The second important point is what robotics has to offer to human behav-
ior understanding, especially in terms of new scientific questions it poses. Since
robots need to act in an embodied manner, it is essential that human-behavior
understanding capabilities provided to/learned by robots are adapted to allow
leveraging this understanding (e.g. the representations) to act appropriately.
Purely functional representations may not be sufficient, and robotics is an ex-
cellent testbed for this; if the correct abstraction is not achieved, transferring
behavior patterns to the robot will not be successful.

A final point is that the presence of the robots causes changes in the behavior
of humans. It is important to understand what kind of new social situations are
created by putting robots with social capabilities, and social roles, in a natural
environment. As the skill palette of robots grows, and they start reading and
responding to social and affective displays of humans, these mutual relationships
will be increasingly complex, and will require more thorough analysis.

Acknowledgments. This work is supported by INRIA project PAL, Boğaziçi
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