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Abstract. This chapter presents a generic internal reward system that
drives an agent to increase the complexity of its behavior. This reward
system does not reinforce a predefined task. Its purpose is to drive the
agent to progress in learning given its embodiment and the environment
in which it is placed. The dynamics created by such a system are studied
first in a simple environment and then in the context of active vision.

1 Introduction

Models of natural or artificial autonomous agents usually imply the existence
of primary motivational principles that govern the behavior of the agent. Bi-
ologists typically describe most of the processes of metabolical regulations as
the results of homeostatic mechanisms maintaining internal “variables” such as
hunger, thirst or temperature into desirable limits. Behaviorists have argued that
behavior was driven by the search for a set of potential rewards corresponding to
primary and conditioned reinforcers [1]. This kind of model has lead to reinforce-
ment learning architectures in which a robot learns to behave in order to receive
artificial “rewards”[2]. In return, recent results seem to suggest a convergence
between the reinforcement learning theory and neurophysiological data from the
midbrain dopamine system in particular [3–5].

Rewards have traditionally been viewed as external stimulations provided
by the environment or by an experimenter. This chapter discusses the opportu-
nity of considering the existence of an internal reward system that would act
as a driving force for learning: a kind of “epistemic hunger”. Several authors
have argued that human behavior is probably driven by a principle of this sort
(e.g. Korand Lorenz’s “neophily” [6], Csikszentmihalyi’s “flow experiences” [7]).
But very few precise models exist to explain the mechanisms underlying such a
curiosity principle.

In our vision, curiosity is tightly linked with prediction capabilities and learn-
ing experiences [8]. “Learning situations” occur when an agent encounters a sit-
uation which is not yet entirely predictable based on its current capabilities but
learnable using its algorithms for adaptation. In models which view homeostasis
as a major drive for living creatures, such kind of situations may be seen as



perturbations [9]. If the goal of the agent is to constantly try to minimize its
error in prediction, learning is simply a way to reach again a form of equilibrium
state (e.g. [10]). Taking an opposite point of view, several authors have suggested
that in order to learn efficiently agents should focus on “novel”, “surprising” or
“unexpected” situations. This would mean that a “curious” agent should focus
on situations for which it does not yet have adequate prediction capabilities (e.g
[11] in field of developmental robotics or [12] in the field of “active learning” ).

The view presented in this chapter is different, but in the line of Schmid-
huber’s theoretical machine learning work [13]. Curiosity is defined neither as
a pressure to minimize errors in prediction, nor as a tendency to focus on the
most ”surprising” situations, but on the contrary as a drive that pushes the agent
to lose interest in both predictable and unpredictable areas, to concentrate on
situations that maximize learning progress.

The next section presents an engine that can generate behaviors based on this
reward principle. As the reward system is generic, this engine can be associated
with any input-output device. However the resulting behavior highly depends on
the embodiment of the device, that is on the physical structure of the device and
on the particular implementation of the prediction systems used by the engine.
In order to understand the learning dynamics created by this reward system,
this chapter focuses first on a simple embodiment. Experiments with a more
complex active vision system are then described.

2 A generic engine

2.1 Technical description

Input, Output, Internal rewards. An agent can be viewed as a plant con-
sisting of an input-output device and an engine controlling it. At any time t,
the engine receives a vector S(t) of input signals (either internal or external to
the agent) and can send a vector M(t) of control signals corresponding to its
actions on the environment or on internal parameters. The set of internal reward
received at time t is contained in a vector R(t). The purpose of the engine is
to maximize the amount of rewards received in a given time frame (possibly
infinite).1

The complete situation (sensory-motor and rewards) is summarized in a vec-
tor SMR(t). The behavior of the engine consists in determining M(t) based on
S(t) and on previous sensory-motor-reward situations SMR(t − 1), SMR(t −
2), ... Given the constraints provided by its embodiment and the environment in
which it is placed, the engine develops in an unsupervised manner.2

1 In this paper we only consider the case of a reward vector of dimension 1, but we
describe the engine in its general form which can deal with more than one reward
function.

2 It is to be understood that, in the present paper, when the expression “sensory-
motor” is used the word “motor” does not necessarily entail physical motion. The
term “motor” refers more generally to any control signal having a potential effect



An important point is that the engine receives inputs and produces control
commands without any a priori information about what they “externally” mean.

Predictors. Predictors form the most important part of the engine. They are
responsible to anticipate future sensory-motor evolutions and expected rewards.
Their function can be implemented as a single predictor Π that tries to predict
future situations.

Π(SMR(t)) → SMR(t + 1) (1)

However, in practice, it is often more efficient to implement this global predic-
tor through three specialized prediction devices: Πm,Πs,Πr. The three devices
take the current situation SMR(t) as an input and try to predict the future
motor situation M(t + 1), the future sensory situation S(t + 1) and the future
state of the reward vector R(t+1), respectively. At each time step, once SMR(t)
is defined, the three devices learn in order to increase their prediction accuracy.
Each predictor adapts differently depending on its implementation. The predic-
tion devices can be implemented in different manners, for instance:

– A recurrent Elman neural network with a hidden layer / context layer. Be-
cause this network is recurrent it can predict its output based on the value
of the sensory-motor vectors several time steps before t [14].

– A prototype-based prediction system that learns prototypic transitions and
extrapolates the result for unknown regions.3

– A system using Hidden Markov Models [15].
– A mixture of experts like the one described in [16] and [17]

The performances of the prediction devices are crucial for the system, but the
architecture of the engine does not assume anything about the kind of devices
used. The choice of a particular technique and its implementation are considered
to be part of the embodiment of the device.

Reward system. At each time step t, the reward system computes the current
values of R(t) based on internal computation on the architecture. The system
we describe below is based on “maximizing learning progress”. At any time t,
the system can evaluate the current error for predicting sensory effect of a given

either on the environment of the agent or on the agent itself: control of physical
actuators, activation of sensory devices, change on internal parameters.

3 It takes the form of a set of vectors associating a static sensory-motor context
SMR(t − 1) with the predicted vector (M(t),S(t) or R(t)). New prototypes are
regularly learned in order to cover most of the sensory-motor-reward space. Predic-
tions are made by combining the results of the k closest prototypes. k is typically
taken as size(SMR(t)) +1 . This prediction system is faster and more adaptive than
the Elman network, but may prove less efficient for complex sensory-motor-reward
trajectories.



command. It is the distance between the predicted sensory vector and its actual
values.

Πs(SMR(t− 1))→ S�(t), e(t) = distance(S�(t), S(t)) (2)

We define the “learning progress” p(t) as the reduction of the error e(t). In
the case on an increase of e(t), progress is zero.

p(t) =

(
e(t− 1)− e(t) : e(t) < e(t− 1)

0 : e(t) ≥ e(t− 1)
(3)

In the case when “learning progress” is the only variable to maximize, the
vector R(t) is of dimension 1 :

R(t) = {p(t)} (4)

Maximizing learning progress forces the agent to move away from predictable
trajectories in order to receive rewards when returning to predicted ones. This is
very different from minimizing or maximizing the error e(t). Minimizing the error
involves carrying out the actions whose effects are the most easy to predict. This
leads to the specialization of the agent into a very small sensory-motor domain,
that it will try to master perfectly. With such a reward system, the diversity
of the behavior of the agent tends to be rapidly reduced. Maximizing the error
involves carrying out the actions whose effects are the most difficult to predict.
This can lead to good results in some cases. But in the case where part of the
sensory-motor space is very difficult to predict, this strategy is likely to result
in destructive learning as the agent will not go back to predictable trajectories.
Experiments with these different kind of reward functions are discussed in [8].

Action selection. The action selection module chooses the output commands
that are expected to lead to the maximum rewards between t and t+T. Several
techniques taken from the reinforcement learning literature can be used to solve
these kind of problems[2]. In our system, the process can be separated into four
phases:

1. Generation : The module constructs a set of possible commands {mi}. For
some applications this phase can be trivial, but more elaborate computations
may be required when dealing with complex actuators. As an example of a
simple case: if the current value of an actuator control signal, m0, is 0.7
then the controller may randomly shift the current value so as to produce
candidate values such as 0.55, 0.67, 0.8, 0.75, for m0.

2. Anticipation : With the help of the predictors, by using the prediction de-
vices in a recurrent manner, the module simulates the possible evolution
{SMRmi} over T time steps. The module combines the result of both Πm

and Πs to predict future sensory-motor situations and uses Πr to predict
the evolution of the reward vector R(t).



3. Evaluation : For each evolution {SMRmi} an expected reward rmi is com-
puted as the sum of all the future expected rewards.

rmi(t) =
t+TX

j=t

˛̨˛̨
R(j)

˛̨˛̨
(5)

4. Selection : The motor command {mi} corresponding to the highest expected
reward is chosen.

The action selection module monitors how well the system is behaving by
computing the average reward < ar(t) > over K timesteps. If < ar(t) > is below
a given threshold η the system acts randomly instead of using the anticipation
process. This allows the discovery of opportunities for learning by chance and
then to exploit them.

3 The light switching system : a very simple embodiment

In order to better understand how the architecture works, this section describes
first the behavior of the system for a very simple embodiment. Let’s assume
that the device is equipped with two sensors. The first one, pos(t) is its position
between 0 and 1. The second light(t) can only take two values 0 and 1 and
corresponds to the presence or absence of a light in the environment. This light is
switched on when the agent occupies a position between 0.89 and 0.91, otherwise
it is zero. The system is equipped with a single actuator nextpos corresponding
to the next position the system should go to. It tries to maximizes its “learning
progress” p(t). A step by step evolution of the system in this simple situation is
described in a detailed manner in the appendix.

Πs, Πm, Πr are three prototype-based predictors with a maximum capacity
of 500 prototypes. For these simulations T = 2,K = 1. To understand the
dynamics produced by the engine more easily, we set η = 0. This means that
the system always attempts to use the action selection mechanism to maximize
rewards.

Measures. In order to evaluate the behavioral effect of the action selection
mechanism based on maximizing learning progress, we need to systematically
compare the simulation results with results obtained for an agent that learns
choosing random actions. Despite its simplicity, the “random” action strategy
can be efficient for learning about unknown environments and discover sensory-
motor contingencies.

The first question is whether the system manages to reach its goal : maximiz-
ing learning progress. We define the cumulative progress P (t) as the integration
over time of p(t).

P (t) =
tX

j=0

p(t) (6)



To evaluate the performance of the action selection mechanism, we define the
comparative progress ratio CP (t) as :

CP (t) =
PMAXPROGRESS(t)

PRANDOM (t)
(7)

In the context of this environment, the second question is whether the action
selection mechanism based on progress leads to a different behavior towards the
light. We define the number of times the light has been switch on as :

L(t) =
tX

j=0

light(t) (8)

To evaluate the difference in the behavior, we define the comparative ratio :

CL(t) =
LMAXPROGRESS(t)

LRANDOM (t)
(9)

Simulation results. Figure 1 shows the evolution of CP (t) and CL(t) for 10 000
time steps. In the beginning of the evolution, the random strategy outperforms
the action selection mechanism. In a situation where very few learning situations
are present, choosing actions based on anticipated progress is a worse strategy
than choosing actions at random.

Fig. 1. Evolution of the comparative progress CP (t) and comparative light ratio CL(t)
for 10 000 time steps



At t = 579, the agent using the action selection mechanism switches the light
on by chance. From that moment, its starts progressing rapidly. The strategy
outperforms the random one around t = 1000 and will continue since then.

The CL(t) curves follows a similar evolution as CP (t). Random action choices
lead first to more situations where the light is on. But as soon as the possibility
to switch on the light is “discovered” by chance by the agent, the action selection
mechanism exploits that source of learning opportunities by switching the light
on much more often than in the random case.

Such behavior is not complex in itself. It would have been easy to define a
system to reward the agent when the light is switched on and off. The external
behavior of such an agent may have been similar to the one of this experiment.
The difference is that our agent had no a priori bias towards that particular
stimulus. In this case, the light switching behavior is an “emergent property”
resulting of a generic internal reward principle.

We can define γ, the point of transition where CP (t) becomes superior to 1.
Once γ is reached, the action selection strategy outperforms the random strategy.
In this simulation γ corresponds also to the transition when the agent starts
switching on the light more often than by random moves.

Figure 1 shows a dramatic increase of CP (t) just after the “discovery of
the light”. But after γ, CP (t) reaches a stationary regime where the progress
performances are not very different from the one obtained with the random
strategy. A similar pattern is observed with the light ratio CL(t). The light is
maximally switched on just after γ. After this initial drive for learning how to
switch the light on or off, the system reaches a kind of habituation phase. There
are no more opportunities for learning. Progress is not zero because there are still
some residual errors in prediction to be improved. But the learning progresses
as fast as with the random strategy.

4 Embodiment in an active vision system

The embodiment we present in this section shares some similarity with an active
vision system described by Marocco and Floreano [18, 19]. But the latter uses an
evolutionary robotics paradigm: population of robots are evolved and the best
individuals are selected according to a predefined fitness function. We use this
embodiment in a developmental perspective.

The system is equipped with a squared retina using RxR perceptual cells. It
can move this retina in an image and zoom in and out. Based on the zooming
factor, the retina averages the color of the image in order to produce a single
value for each cell of the retina. With such a system, it is possible to rapidly
scan the patterns present in the overall image and zoom in to perceive some
details more accurately. The system has to learn how to ”act” on the image by
moving and zooming the retina in order to get the higher reward as defined by
its reward system.

More precisely, for a given image snapshot I(t), the sensory vector S(t) con-
tains the renormalized grayscale value of the RxR pixels of the retina, its current



position (X(t),Y (t)) and zoom factor Z(t). The motor vector M(t) contains the
values for the three possible actions the device can perform: changing the X and
Y values and the zooming factor Z. 4

S(t) =

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

Pix1,1(t)
Pix2,1(t)

...
P ixR,R(t)

X(t)
Y (t)
Z(t)

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

, M(t) =

˛̨
˛̨
˛̨
DX(t)
DY (t)
DZ(t)

˛̨
˛̨
˛̨ (10)

The system is presented with a white image where a grey circle is drawn in
the down right corner (Figure 2). This situation shares a lot of similarities with
the light switching environment previously studied: the environment is uniform
except in a small zone and at a given time t, the agent only perceives a small
part of it. But the sensory-motor know-how to be developed to master the retina
is much more complex.

Fig. 2. Image used for the active vision experiment

The system is equipped with a 5x5 retina, so S(t) is of size 5∗5+3 = 28 and
SMR(t) of size 28+3+1 = 32. As in the previous experiments, Πs, Πm, Πr are
three prototype-based predictors with a maximum capacity of 500 prototypes,
T = 2 and K = 1. Three simulations where conducted : one with η1 = 0.01,
one with η2 = 0 and one with actions chosen randomly. CP1(t) and CP2(t) are
defined as previously. By analogy with the light example, we can define l(t) which
has value 1 when the center of retina is inside the gray circle and 0 otherwise.
CL1(t) and CL2(t) defined as previously measure the relative focus on that part
of the image in comparison with a retina governed by random commands.

Figure 3 shows the evolution of CP1(t), CL1(t), CP2(t) and CL2(t). With
η1 = 0.01, the system discovers rapidly that to focus on the grey circle lead to
4 It is not sure that the global position information X(t), Y (t), Z(t) are necessary for

the system to work as theoretically they can be deduced from the temporal integra-
tion of DX(t), DY (t), DZ(t). However, in practice, it was difficult for the system to
discover how the “borders” of the image constrained the retina’s movements, without
using this positional information.



more learning progress. CP1(t) and CL1(t) show similar features than the ones
observed for the light switching problem : (1) the action selection mechanism
outperforms clearly the random strategy, (2) once the “interesting” part of the
environment is discovered the agent focuses mainly on it for a while, (3) even-
tually an habituation phase is observed. However with η2 = 0, the performances
are worse than random. A study of the trajectory shows that the agent focuses
on corner instead of focusing on the grey circle. As the sensory-motor-reward
space is larger then in the previous system we are confronted with a classical
exploration/exploitation trade-off. An optimal strategy may consist in an adap-
tive system evaluating CP (t), increasing η when CP (t) < 1, reducing it when
CP (t) > 1.

Fig. 3. Evolution of the comparative progress CP 1(t)(η = 0.01) and CP 2(t)(η = 0)and
comparative focus on the grey circle CL1(t)(η = 0.01) and CL2(t)(η = 0.0)for 10 000
time steps

5 Conclusions

An agent motivated by maximizing learning progress constructs its behavior in
order to go from unpredictable situations to predictable ones. Instead of focusing
on situations that it predicts well (minimizing prediction error) or on situations
it does not predict at all (maximizing prediction error) it focuses on the frontier
that separates mastered know-how from unmastered know-how. This strategy
enables the development of more complex behaviors in a given environment. In
the two experiments described in this chapter, the agent discovers a feature of its
environment that is only visible when specific actions are performed. As soon as



the agent discovers this feature, it tries to learn about the sensory effects of its
actions in this context. Once its learning progress ceases to increase, the agent
stops focusing on this sensory-motor trajectory as it is now part of well predicted
situations. This focusing behavior can be seen as a novel behavior mastered by
the agent.

One major challenge for developmental robotics is to build a single architec-
ture that would enable a robot to develop novel behaviors of increasing com-
plexity. Can the same mechanisms enable a robot to autonomously learn how
to avoid obstacles, discover how to use objects or structure its interactions with
other robots? We believe reward systems like the one presented in this paper can
play a key role to build robots capable of open-ended development. However, the
reward system in itself is not sufficient. The development of complex behaviors
results from the interplay between generic motivational principles, particular em-
bodiment (including a particular physical structure, perceptual and motor ap-
paratus and learning techniques) and environmental dynamics (see for instance
the experiments discussed in [20] in this volume). For these reasons, further re-
search in that direction should focus on exploring how generic principles such as
the one presented in this chapter can be used in experiments with grounded and
situated robotic agents.
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Appendix

This appendix describes a step by step evolution of the system for the light switching
problem. In this example the parameter η is set to 0.01. Let’s assume that the system
has been active for t time steps and that during that period the light stayed at value 0.
For the sake of simplicity, we will make the unrealistic assumption that the predictors
learn rapidly and ”perfectly” based on the situations they encountered. So we will
assume that the predictors have learned to predict that pos(t) = nextpos(t − 1) and
that light(t) = 0.

Time t. At time t the situation is the following.

e(t− 1) = 0, SMR(t− 1) =

˛̨
˛̨
˛̨
˛̨

pos(t) = 0.4
light(t) = 0

nextpos(t) = 0.2
p(t) = 0

˛̨
˛̨
˛̨
˛̨
, SMR(t) =

˛̨
˛̨
˛̨
˛̨

pos(t) = 0.2
light(t) = 0

nextpos(t) =?
p(t) =?

˛̨
˛̨
˛̨
˛̨

(11)

The ”perfect” predictor for sensory information, Πs, gave the following predictions:

Πs(SMR(t− 1))→
˛̨
˛̨position(t) = 0.2

light(t) = 0

˛̨
˛̨ (12)



So e(t) = 0 and p(t) = e(t− 1)− e(t) = 0.
The role of the action selection module is to determine nextposition(t). The average

progress, close to zero, is currently inferior to η. Acting randomly, the system chooses
nextposition(t) = 0.9. The vector SMR(t) is now completed. The three predictors can
learn by comparing SMR(t) with the values predicted based on SMR(t− 1).

Time t+1. As the agent moved to 0.9, the light was switched on. Consequently, the
situation at time t+1 is the following, and Πs could not predict that evolution.

SMR(t + 1) =

˛̨
˛̨
˛̨
˛̨

pos(t + 1) = 0.9
light(t + 1) = 1

nextpos(t + 1) =?
p(t + 1) =?

˛̨
˛̨
˛̨
˛̨
, Πs(SMR(t))→

˛̨
˛̨pos(t + 1) = 0.9
light(t + 1) = 0

˛̨
˛̨ (13)

So e(t + 1) = (0 + 1)/2 = 0.5 and as progress is negative p(t + 1) = 0. Next action
is random : nextpos(t + 1) = 0.7. Predictors learn.

Time t+2. Situation at t + 2 is the following

SMR(t + 2) =

˛̨
˛̨
˛̨
˛̨

pos(t + 2) = 0.7
light(t + 2) = 0

nextpos(t + 2) =?
p(t + 2) =?

˛̨
˛̨
˛̨
˛̨

(14)

Let’s assume that the predictor has predicted correctly that the light will be switched
off after that move.

Πs(SMR(t + 1))→
˛̨
˛̨pos(t + 2) = 0.7
light(t + 2) = 0

˛̨
˛̨ (15)

So e(t + 2) = 0 and p(t + 2) = 0.5− 0 = 0.5 . Because p(t + 2) > η, next action will
be chosen through anticipation. The system creates a set of possible values for nextpos
and tries to predict their effects in terms of rewards. If the system only looks one step
ahead no reward can be anticipated. But if the system looks at least two steps ahead,
it can anticipate that choosing nextpos near 0.9 will lead to a situation similar to the
one experienced at time t+1. Using predictor Πm to simulate what it would do next in
such a situation and Πr to evaluate the associated expected reward a total anticipation
of the situation at t+3 is possible.

Π(

˛̨
˛̨
˛̨
˛̨

pos(t + 2) = 0.7
light(t + 2) = 0

nextpos(t + 2) = 0.91(tried)
p(t + 2) = 0.5

˛̨
˛̨
˛̨
˛̨
)→

˛̨
˛̨
˛̨
˛̨

pos(t + 3) = 0.91(Πs)
light(t + 3) = 1(Πs)

nextpos(t + 3) = 0.7(Πm)
p(t + 3) = 0(Πr)

˛̨
˛̨
˛̨
˛̨

(16)

The system can then use Πr to anticipate the expected reward at t+4 (e.g. p(t+4) =

0.5). Based on this anticipation the system will decide to move to 0.91 in order to

experience again the transition that lead to an increase of p(t). This example illustrates

one possible way for the system to optimize the learning progress p(t). The variable

p(t) is positive when the system moves from an unpredicted situation to a predictable

one. This means that the system is rewarded when it “returns” to known situations.

But to be “returned”, the system must first leave the situations it anticipates well.


